The Routledge International Handbook of Research on Teaching Thinking

Rupert Wegerif, Li Li, James C. Kaufman

Promoting creativity in Chinese classrooms

Publication details
Zhaocun Li, Amber Johnston
Published online on: 03 Jun 2015

PLEASE SCROLL DOWN FOR DOCUMENT

Full terms and conditions of use: https://www.routledgehandbooks.com/legal-notices/terms

This Document PDF may be used for research, teaching and private study purposes. Any substantial or systematic reproductions, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The publisher shall not be liable for an loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
Promoting creativity in Chinese classrooms
An examination based on educational policies

Zhaocun Li
EAST CHINA NORMAL UNIVERSITY, CHINA

Amber Johnston
ARIZONA STATE UNIVERSITY AND 3E INTERNATIONAL SCHOOL, USA

Teaching for successful intellectual styles

In the international literature, Chinese education is frequently described in ways that make it seem antithetical to the aim of creative thinking. It is depicted as an exam-focused education system, one overly emphasizing rote memorization and largely blocking creativity and innovation (Vandervert, 2013; Martinsons & Martinsons, 1996; Gu & Johnson, 1996). It is considered more a reproductive process of accumulating information rather than an analytical or speculative process (Ballard & Clanchy, 1991; Conner, 1996). The students in this system of education are generally described as merely quiet learners, reluctant to participate in classroom activities and to ask questions. They are rote learners, who learn mechanically, yet lack meaningful understanding and creativity (Li & Wegerif, 2014).

However, such pictures of education in China have been changing steadily in the recent two decades. Particularly since the beginning of the new millennium, many significant changes have occurred in Chinese educational policies for promoting innovation and creativity in primary and secondary education (Peng & Plucker, 2013). In 2001, the Ministry of Education of China put forward *The Outline of Basic Education Curriculum Reform* and set up new curriculum standards for Chinese basic education. This reform intended to transition China from historically exam-oriented education into a system of “essential-qualities-oriented education” (EQO) which focuses on developing students holistically, with special attention to their abilities in creativity and practicality. In 2011, these curriculum standards for basic education were revised. And the curriculum standards for teacher education were also developed in order to train pre-service teachers to similarly apply creative education approaches in their future classrooms.

Therefore, the major goals of this chapter are to examine the ways that Chinese educators think about developing students’ creativity in learning and the problems faced within this new education trend in China. First, in order to provide context for this discussion of creative
A brief history of creative education in China

Looking back on the modern developments in Chinese basic education, we can see that attention to fostering creativity began at the early of the twentieth century. From then on, creative education in China went through three significant stages:

Stage 1: the early twentieth century

During the early years of the twentieth century, the breakout of the New Culture Movement and the dissemination of philosophical and educational thoughts from the West built a social and cultural base for creative education in China.

The New Culture Movement was an anti-traditional enlightenment phase, starting in 1915 and peaking in 1919. It highlighted the ideas of “democracy” and “science.” It called for a democratic system and fought against the feudal autocracy of the patriarchal family of traditional Chinese society. It also asked for the equality and liberty of individuals and promoted scientific thought, rather than the Confucian antique thoughts and idol worship of past years. Under the promotion of the New Culture Movement, the word “creation” was gradually acknowledged as a new and important anti-traditional cultural value and ethical norm. Thus, Education can never be malfunctioning and satisfied with the model of teaching characterized by imitation and passiveness, but should teach students to be subjective, independent and creative, so that they can keep up with the need and the progress of society (Tian, 1917).

Meanwhile, a flow of Western philosophical and educational thoughts were introduced into China, which then facilitated the development of creative education. For example, French philosopher Henri Bergson’s (1907) ideas about “creative evolution” and “creative will” were very popular during this time. His ideas about creativity enlightened Chinese scholars to understand students’ creative intuitions. Also, On April 30, 1919, John Dewey, a leading figure in American Progressive Education, began his visit to China. During his more than two years stay, Dewey delivered almost 200 speeches conveying the values of progressivism. His work became an important resource for Chinese creative education at that time. Tao Xing-Zhi was a significant figure in the early research and practice of Chinese creative education. He studied under John Dewey at Teachers College, Columbia University between 1915 and 1917. Tao then made vital contributions to Chinese creative education practice by integrating Western educational thoughts into traditional Chinese philosophy and systems.

At this stage, the important tenets of creative education were the following:

1. Creativity as the inherent nature of students. Creativity was thought of as an implicit gift and the true nature of human beings. As Tao (1946a) once stated, “every place is a place of creativity; every day is a day of creativity and every one is a person of creativity” (p. 3). The main task of creative education was to provide an educational environment according to students’ personal characteristics and to then let them develop as naturally and fully as possible.

2. The essential goal of creative education was to foster students’ pursuits of truth, kindness and beauty. Admittedly, creative education during this period also emphasized improving students’ awareness of problem solving. Still, influenced imperceptibly by traditional
Chinese virtue-focused culture, the ultimate goal of creative education at this stage was to cultivate students’ pursuits of truth, kindness and beauty. For a man without sense of virtue, the more knowledge and skills he had, the worse person he could be. However, virtuous people could be creative for themselves, for the society, for the country and for the people (Tao, 1946b) This moral orientation of creative education embodied the Confucian ideal for a creative individual as someone with a high moral standard (Niu & Kaufman, 2012).

Creative education was built on practice. Tao incorporated the hands-on learning thoughts of John Dewey with the traditional Chinese philosophy of unifying knowledge and practice. Practice should not only be limited to formal classroom activities, but also productive labors within everyday life (Tao, 1933). From the perspective of the politics of education, Tao (1934) pointed out that the traditional Chinese education system took education and daily life apart, so that physical labor and mental labor were separated. With not enough attention to authentic practice, students under this kind of education system turned out to be bookish persons who “only read books, read only books, and then end up with reading books” (p. 5).

Creative education should respect the personality and freedom of every student. Influenced by student-centered education concepts, creative education at this stage tended to provide students with a more comfortable and freer atmosphere and also respected their individual personalities. Tao listed “six set-frees” for creative education:

set students’ brain free, and let them think differently; set their hands free, and let them learn with hands on; set their eyes free, and let them observe; set their mouths free, and let them ask and speak; set their space free, and let them get out of classroom and into the nature, society gaining direct experience; set their time free, get rid of the extreme exam system which deprives students of their time to think and to experience life.

(Tao, 1945, p. 9)

These “set-frees” revealed the necessary and practical elements to developing and implementing creativity in the Chinese education system.

During the war years, there was an unfavorable social environment for the continued development of creative education. During this time, creative education in China did not yet achieve the desired outcomes. The People’s Republic of China was founded in 1949. In the next thirty years, Chinese education was greatly influenced by the education theories and practices of the former Soviet Union. The philosophies and practice of this time featured a return to direct teaching. Creative education in China did not make any further progress at this time.

Stage 2: 1980s and 1990s

At the beginning of the 1980s, creative education in China called for intense attention once more. The Chinese government proposed the Reform and Opening-up Policy in 1978. This policy connected with the Western studies of creativity techniques had great impact on this stage of Chinese creative education.

The Reform and Opening-up Policy of 1978 focused on economic development and modernization of China. This decision increased the need for creative personnel within all different fields. In the meantime, the implementation of this policy allowed China to gain more of an understanding of the latest developments in international science and technology. “Knowledge explosion” became a striking term of this period. More and more people began to realize that knowledge alone was not enough to keep up with the rapid pace of these developments. The capabilities of discovering, developing, and creating new knowledge became ever more essential. This idea was embodied fully in the document, Decisions about the Reform of the Education System,
which was put forward by the Chinese government in 1985. It claimed that the essential purpose of education system reform was to improve the quality of the overall population. It went on to explain a vision for cultivating more and better talented personnel, who may seek new knowledge persistently and demonstrate the scientific spirit of verifying truth with facts, thinking independently, and the courage of creation (MOE, 1995).

At the same time, the Western creativity techniques, such as Osborn’s (1963) “brain storming,” Zwicky’s (1969) “morphological analysis,” and Gordon’s (1961) “synectics method” were introduced to China. It was believed that all these creative skills could lead to the invention of products and could then yield great economic value for China in a very short time.

At this point, creativity research and creative education began to flourish in China (e.g. Niu, 2006). The first conference about creatology was held in 1983. And, the Chinese Association of Inventions was founded in 1984. These two organizations aimed at disseminating knowledge about creativity to K-12 schools. The first national conference of K-12 creative education was held in 1992. The second conference in 1993 saw the foundation of the Division of K-12 Creative Education Research which was affiliated with the Chinese Association of Inventions.

The following ways were often used to develop creativity of students in this stage (Chen, 1994):

1. Connecting creativity with invention. This led to the development of student creativity through such extracurricular technological activities as small crafts, small inventions and small essays. In such activities, students used their minds and hands and made inventions which had educational, social and economic value. These types of activities started in the early 1980s. Many K-12 schools, youth science and technology museums, and invention associations and so on organized these activities to different degrees.

2. Prompting students’ creativity in classroom subject instruction. Motivated by the activities above, some teachers realized that extra-curricula activities were not enough to prompt the creativity of their students. So they began to explore how to prompt students’ creative thinking in their classroom instructions. This approach to creative education could not change the uniform textbooks and curriculum plans. Rather, teachers used their teaching materials and various instructional methods to help students learn strategies to develop creative thinking. However, because the Chinese national curriculum guideline was not adjusted to more easily facilitate such creative education, this approach was much harder to implement.

3. Offering special courses focusing on training students’ creative thinking skills systematically. Inspired by the creativity techniques such as brainstorming, attribute listing, and so on, Chinese educational researchers and practitioners summed up training patterns for creative thinking in Chinese educational practice. For example, Shanghai He-Tian Primary School was inspired by Osborn’s checklist method: add, minus, relate, define, and so on to develop the “He-Tian Twelve Techniques.” Training of these skills was then implemented through some special school-based creativity courses. The name and teaching content of such special courses varied from He-Tian to other primary schools and were sometimes known by such names as “creative education,” “science and technology invention,” “thinking and creating,” and so on.

4. Founding specialized invention and creation schools. One kind of programming already described was the extra-curriculum invention schools. Their activities were mainly carried out during holidays, weekends, and after-school hours. Another approach was to change the school thoroughly into a specific invention school, which highlighted the creative education characteristics of the program. Besides training for creative thinking through use of different instructions for every subject, they also set up school-based courses, such as the common sense of creativity, in order to further open the minds of students.
Looking back on this second stage of Chinese creative education, we found that it was influenced by the urgent demand for economic development and modernization. The education policy makers had realized the importance of creative education. However, in spite of the widespread motivations, the Chinese national curriculum framework was not changed to fully integrate creative thinking curriculum. Creative education still needed to be realized through extra-curriculum activities. Though some teaching experiments explored how to develop students’ creative thinking within the subject curricula, teachers still needed to first accomplish any teaching tasks required by the national curriculum guidelines. Before the new national curriculum reform was initiated, the exploration of creative education was as limited as dancing with fetters.

In the meantime, it can be concluded that creative education at this stage was embodied mainly as a pattern of creative engineering. Compared to the previous stage in which creative education was deeply influenced by life philosophy, in particular, progressive thoughts, this stage tended to identify creativity with scientific and technological innovations. It also equated the implementation of creative education with small crafts, modest inventions, and training students’ creativity techniques.

Stage 3: the new millennium

As the 1990s came to a close and China entered the new millennium, the concept of a knowledge economy gained intense attention. The importance of creativity was realized more deeply than before in China. The development of creative education became even more urgent.

In 2001, the Ministry of Education issued *The Outline of Basic Education Curriculum Reform (Trial)* in an effort to thoroughly reform the K-12 curriculum system and further turn exam-oriented education into essential-qualities-oriented education which focused on developing students’ creative spirits and practical abilities. The goals of this curriculum reform were as follows: 1. To change the trend that excessively emphasized knowledge transmission. To stress an active learning attitude and guide students toward learning how to learn; 2. To change the curriculum structure that excessively emphasized segregated subjects. To add integrated courses and optional courses; 3. To make the curriculum contents more closely linked to students’ lives and the latest developments in society as well as science and technology; 4. To move beyond the receptive rote learning into advocating for students’ active participation within the learning programs; 5. To change the purpose of curriculum assessment from excessively emphasizing grading and certification to facilitating the holistic development of the students; 6. To decentralize curriculum management by establishing a three-tiered structure consisting of the national, the provincial, and the individual school levels (MOE, 2001).

Later, curriculum standards for every subject were issued in 2002 and then additionally revised in 2011. All these standards highlighted the cultivation of a creative spirit in students.

In further detail, creative education during this current period had the following features:

1. Combined students’ creativity with their well-rounded development. In the previous stage, as mentioned earlier, the cultivation of creativity was more a sort of training for creative skills. However, in this stage it was perceived in the context of a broader goal of well-rounded development of students’ personalities. The ideal picture of a well-rounded student included the characteristics of: creativity, problem-solving ability, social responsibility, health, a disposition toward life-long learning, and so on. The change at this time was in no longer seeing students as the tools for prompting creativity. Rather, creativity now served for the support and development of the students.
Focus on the cultivation of students’ creative spirits. Compared to the previous period that focused on creativity training through little crafts and inventions, people started to focus on developing students’ overall creative spirits, such as questioning and exploring, independent thinking, demonstrating a venturesome spirit, and thinking differently. For example, the Geography Curriculum Standards in Compulsory Education emphasized developing students’ senses of creativity, stimulating their interest in learning, adopting independent thinking habits, encouraging the proposal of their own ideas and thoughts, and creating a relaxing learning environment for self-regulated learning (MOE, 2011a).

Creative education began to be incorporated into national education policy design. In the first stage in the early twentieth century, creative education was more like a new thought movement and did not actually impact the design of national curriculum; During the second stage from the 1980s and most of the 1990s, creative education was either implemented through extra-curricula activities or as a supplement to the school-based curriculum. Again, the national curriculum plan was not adjusted accordingly. However, at this stage, creative education was noticed on the national level of education reform. The national curriculum plan and standards were restructured in order to prompt creativity of students. These changes were not only simple adjustments of instruction methods but also called for a transformation of the whole curriculum and instruction culture of the Chinese education system, as well as the policies underpinning them.

Reflecting on this most recent period, it’s obvious that the progress of creative education in China has become a policy-directed national act. Or from a wider perspective, the current pursuit of wider creative education aligns with the national strategic plan of building an innovative education system that will support China’s growing needs. A wider and deeper commitment to creative education has formed.

Current explorations of China’s creative education: an analysis based on basic education curriculum reform

We have described the brief history of creative education in China. Now, we will further examine Chinese educators’ efforts and explorations to more fully promote students’ creativity by analyzing educational policies in the latest basic education curriculum reforms which were initiated in 2001 and are still ongoing.

Adjusting curriculum structure and enhancing curriculum integration

For many years, traditional Chinese education was characterized by the dominance of discrete subject-matter curricula and strict uniformity of teaching, which are thought of as suppressing students’ creativity. So, one of the main explorations made in this curriculum reform is to adjust curriculum structure and to enhance curriculum integration. This unfolds in the following three ways:

First, integrated curricula which bring together related subject are designed, including Morality and Life (Grades 1–2), Morality and Society (Grades 3–6), Science (Grades 3–6), Science (Grades 7–9), Arts (Grades 1–9), and History and Society (Grades 7–9). These curricula are either modifications or combinations of existing subject-matter ones, so as to give a more generalized
picture of knowledge, and build a good cognitive base for the continued development of students’ creativity.

For example, *Morality and Life (Grades 1–2)* is designed with three main topics: students as individuals, students as members of a society, and students within the natural world. This curriculum is intended to guide students toward learning to love life; learning to be good people, who care for others, the community, and themselves; and learning to inquire actively, to develop their senses of creation and to develop practical abilities. Within this curriculum, students construct the knowledge actively through participation in learning activities. This way of learning is very different from the former reliance on direct instruction and repetition. Teachers led students to learn through different means, such as: observation, investigation, discussion, visiting, interviewing, manufacturing, planting and communicating. Students are encouraged to interact with the environment and work in different groupings to get real active experiences of nature and society. This allows them to develop creativity and practical abilities (MOE, 2011b).

From the design ideas of this revised curriculum, we can see that the training of students’ creativity is neither far removed from students’ everyday lives nor reserved exclusively for elite students. Instead, it roots in the healthy, positive, and responsive daily life of every student. This indicates that there are a lot of opportunities to create and learn in students’ daily lives; And, that creative education also make students’ lives more valuable and meaningful.

Second, the new type of curriculum *Integrated Curriculum of Practical Activity* is added. Rather than following a particular course of subject knowledge, the design of this curriculum focuses on connecting the life experiences of students. By leading students to explore interesting topics from real life through activities like making, observing, doing experiments, and so on, this curriculum strengthens students’ abilities in inquiry and creativity, as well as their abilities to apply knowledge comprehensively.

The most important sub-field of the *Integrated Curriculum of Practical Activity* is inquiry learning. As a learning approach, inquiry learning is strongly promoted during this curriculum reform and is incorporated into all the national curriculum subjects. However, generations of teachers frequently regard teaching as interpreting and disseminating knowledge, while students usually treat learning as the imitation and repetition of the information given. This historically entrenched teaching habit is a great barrier to the newer approach of inquiry learning. So, in order to be accepted by the general population as soon as possible, it is necessary to set up a specific curriculum of inquiry learning. Students may choose inquiry topics from nature, society and their own lives. These topics will be based on their own interests and under teachers’ instructions. During the inquiry process, students can actively acquire and apply knowledge to problem solving and form a positive, vivid, self-regulated, and collaborative inquiry learning style. Compared with the approach of inquiry learning within the subject curricula, students can apply their knowledge comprehensively across the interdisciplinary curricula to boost their creativity and abilities to solve problems in the curriculum of inquiry learning (Zhang, 2010).

Third, the integration within each subject curriculum is strengthened. For example, in the *Math Curriculum Standards in Compulsory Education*, a unit for “Integration and Practice” is specially set up. The major goal in this instance is to cultivate students’ abilities to comprehensively use math knowledge and skills to solve real problems and to enhance students’ creativity. Teachers may lead the students in how to determine the problems best suited for them, change real-life problems into math problems, how to design solutions to solve them, and how to present the results efficiently. Teachers inspire student attempts in this new learning approach and “teach” through directing students into their active-learning roles and organizing
communications among the students. They encourage students to present their thinking process, exchange answers and strategies, and support students’ creative potential (MOE, 2011c).

Above all, in contemporary Chinese basic education, the integration of curricula is regarded as the most efficient way to facilitate students’ well-rounded development, including the development of their creative spirits. This integration is not limited to the integration of subjects, but also founded within a curriculum design based on real-life experiences and social issues. Thus, the barriers between subjects begin to be broken down. Students then form more holistic pictures of knowledge and better develop their creative senses and abilities to solve real problems.

To change the ways of learning

Besides the big adjustment of shifting from a static curriculum structure, this curriculum reform also changes students’ dynamic learning styles. The traditional Chinese learning style is always criticized because it is a passively receptive way of learning. In class, teachers are the only ones who are talking and students are just listening. The natural initiative, creativity, and interests of students are suppressed. Zhong (2001) has pointed out that in such school education, “the curriculum goals are just superficially achieved” (p. 201). Students learn to follow teachers’ directions and parrot back the given information. But the creativity and problem-solving ability of the students are neglected.

So, in this current curriculum reform, new ways of learning are advocated, which highlight the following characteristics:

1. **Learning as exploratory.** Besides the independent “inquiry learning” curriculum introduced above, exploration-based ways of learning are emphasized in every subject curriculum. In the *Chemistry Curriculum Standards in Compulsory Education*, it is mentioned that teachers should realize fully the unique value of participation in scientific inquiry on students’ development of scientific literacy. Students should be offered more opportunities to actively experience scientific exploration, develop their creative spirits and practical abilities through inquiry-learning. Teachers are encouraged to design and organize exploratory activities efficiently based on their students’ cognitive development. For example, when exploring “the necessary elements of combustion,” teachers may lead students to inquire in three experiments of: combustibility, oxygen, and ignition temperature. Teachers can also have students collect information about the ancient ways to make fire by drilling wood or using flint in the library or on the internet, then discuss these three elements of combustion (MOE, 2001d). Here, we can see that, although this knowledge is the common sense of chemistry for adults, it is new for these students. According to the conception of “mini-c” creativity (Beghetto & Kaufman, 2007; Kaufman & Beghetto, 2009), which focus on creativity at a personal level, the students’ findings are not “Big-c” which have outstanding contributions to society, but rather “mini-c” which are novel and personally meaningful interpretations of learning experiences.

2. **Learning as collaborative and interactive.** The interactions between teachers and students and amongst students are related key element to this inquiry learning. Collaborative inquiry activities are mostly implemented in small groups, where students are encouraged to share and discuss both the process and their results. This is clearly emphasized in the *Science Curriculum Standards in Compulsory Education*. Teachers should lead students to collaborate in various ways. They may create an open environment, so that students respect each other and learn to listen to each others’ opinions and perspectives. In such collaborative learning,
communication skills are important. Teachers should encourage students to not only hold and express their own opinions, but also even to question others’ sometimes problematic ideas and opinions, as well as bravely give up their own problematic opinions in order to openly accept the more reasonable scientific explanations of others. Teachers should also offer all the students equal learning opportunities, respect their different opinions, and rouse their exploratory learning passions of curiosity (MOE, 2011e).

3 Learning as practical. This means to break beyond the limits of learning as only within the classroom and, so, teacher guide students to apply the knowledge they learned in practice of solving problems in life. For example, in the Geography Curriculum Standards in Compulsory Education, teachers are required to develop practical Geography activities beyond the classroom on the campus level. For example, they may design the project “I help to plan our school,” in which students apply their learned knowledge about mapping in a more creative manner. And, teachers should also promote field studies and social surveys that encourage students to experience Geography beyond the classroom (MOE, 2011a). The History Curriculum Standards in Compulsory Education suggests that teachers guide students to participate in history inquiries and social investigations off-campus. For example, students can study the historical development of cultural relics, historic sites, and their everyday communities. They may collect and analyze related materials, such as samples, menus, inventories, and other information, and then finally synthesize their research into a report for others (MOE, 2011f).

All the learning styles above are designed to change students’ passive roles in learning and to re-instate their initiative. In such creative learning, the teachers’ roles are not reduced; on the contrary, they face larger challenges to play this more guiding role. In the Math Curriculum Standards in Compulsory Education, when teachers design and implement instruction plans, they are required to consider such questions as: How can I organize students to explore and think creatively? How do I best motivate students to be increasingly willing to learn? How can I lead students into experiencing the joy and value of math with increased confidence? How do I help students learn to collaborate and communicate? How can I train students to persist and overcome difficulties? (MOE, 2011c). Many such questions remain for teachers within a creative learning model for teaching and learning To these teachers, pondering these questions and then applying them to their instructional process are typically more difficult than direct-instruction.

Evaluation reform

The former evaluation system is widely criticized as overemphasizing rote knowledge and isolated skills. It neglects students’ practical abilities and creative spirit. In order to better facilitate students’ development of creativity, this curriculum reform has made dramatic changes in student evaluations:

1. **Contents of evaluation:** These emphasize the inquiry process. The Biology Curriculum Standards in Compulsory Education explicitly states that evaluations should focus on students’ inquiry process, where students gradually gain abilities to observe, discover strategies, and then conclude problems. They also demonstrate their abilities to design experiments and surveys, to collect and analyze data, as well as express and communicate their findings. For example, in the inquiry activity of “conditions for seeds to germinate,” techniques for evaluating students can include the following: proposing questions and hypotheses based on
observations and life experiences; designing experiments using available materials to test the hypothesis; preparing materials and conducting experiments according to plans and obeying scientific norms; using experimental tools safely; recording and collecting data honestly; analyzing data and drawing relative conclusions; collaborating and communicating with others; and, thinking independently and expressing different opinions from peers (MOE, 2011g).

2 Methods of evaluation: In order to record students’ development and progress more accurately, this curriculum form requires moving beyond the traditional paper-and-pen-based testing and seeks to diversify evaluation methods. The key evaluation points should be students’ understandings and applications of basic knowledge, rather than simply memorizing and repeating. Teachers should design vivid problem situations to examine students’ practical skills in observing, analyzing and inquiry learning abilities. An example is offered in the Chemistry Curriculum Standards in Compulsory Education, where conventional tests about crystallization asking, “what are the ways to crystallize the matter out of the solution?” can be changed into a question more closely related to daily life, such as “why can sea salt be crystallized from seawater under the sunlight?”

3 Build student learning portfolios. Portfolios are an integrative evaluation of each student’s whole learning process. Building student learning portfolios requires teachers to collect representative materials from students’ learning activities (e.g. exams, exploratory activity plans, reports, papers, crafts, reviewed literature, pictures and newspaper clippings collected, etc.). These types of integrative evaluations create more authentic records of students’ learning and development. They may provide opportunities for teachers to more fully observe and evaluate each student and, in return, better reflect on their own teaching and seek ways to improve. They can also facilitate students’ awareness of their own learning and development and help them learn how to do reflections and self-evaluations. Teachers should frequently go back to these student learning portfolios and give timely positive feedback to the students. Teachers may also encourage students to file artifacts into their own learning portfolios and then to periodically reflect on their own learning processes.

Current problems and future directions

According to the previous examination, it can be concluded that the cultivation of students’ creativity within learning is at the center of the whole Chinese basic education curriculum. While there have been significant advancements in this, there are still quite a few problems to be more deeply researched and resolved within these ongoing efforts.

The first issue is the paradox between curriculum integration and the professional development of teachers. As stated above, a basic feature of the curriculum reform is curriculum integration. There is a difference between teaching for creativity and teaching creatively (Jeffrey & Craft, 2004). And, although the integrated curriculum aims to cultivate students’ creative spirits and inquiry abilities, the achievement of these goals depends on high quality teachers. If teachers lack the knowledge and skills of their relative subjects, they may not be able to integrate the classroom program successfully. As a result, this integrated curriculum will just be an empty shell. Besides, if teachers have no experience with such an integrated curriculum, it will indeed be more difficult for them then to implement such a plan. Teachers who are used to teaching in a traditional model (i.e. teacher-directed, lecture-based, discrete subject instructions) probably tend to simply put the pieces of the curriculum together in a superficial manner. Therefore, it
is a long term mission in the education system to improve teachers’ fuller understandings and more sophisticated implementations of integrated curricula.

Another issue for us to further think upon is inquiry learning. Inquiry learning plays a significant role in this education reform. With teachers’ guidance, students can choose inquiry topics from their academic and social lives and actively learn and apply knowledge to solve problems. However, the current situation shows that there is a “scientism” trend revealing the confusion over what is meant by “inquiry” in education. That is to say, inquiry learning is understood as a part of the scientific domain only – to mean scientific research and scientific activities. Within this misunderstanding, teachers may lead students to do research on science and technology and use the scientific process in isolated curriculum moments.

Actually, the term “inquiry learning” is really about more than just performing an inquiry. It is also the exploration of meanings, the experiences and understandings of human beings, and their relations with other living beings in the world. Therefore, the prompting of students’ creativity would embody the social ethic only if teachers themselves fully realize the essential nature of inquiry learning. Once teachers recognize this central concept, they can better help students form positive values of creativity and understand how creativity should also serve the common good and work toward a future of sustainable development. Although, in this curriculum reform, teachers are encouraged to lead students to form an attitude toward living and to develop social responsibility, these measures are still not enough to prevent the “scientism” trend often found within so called “inquiry learning.” Further theoretical discussions are needed on this in the future. The traditional Chinese value of anthropocosmic (Tu, 2005) stresses the harmony between nature and humans. This philosophy may be the alternative perspective to help the Chinese curriculum designers reflect more on the inquiring learning.

Conclusion

In this chapter, we traced the brief history of creative education in China over the last century and into this new millennium. Then we focused on the current efforts and explorations of prompting students’ creativity by examining the educational policy in the underway curriculum reform. We also looked at ongoing challenges for creative education in China and make suggestions for the future.

Though current education in China continues to further cultivate creative talents, there is still a long way to go to change the entrenched “exam-focused” educational culture. The curriculum standards issued by the government are more like “espoused theories” at the policy level. In order to essentially form an educational culture to teach for greater creativity, these “espoused theories” should transform into “theories-in-use” (Osterman and Kottkemp, 1993, p. 5). And, then, they need to actually be implemented in education practice. Though there is still a long way to go, we are already well on the way.

Note

1 The first two civil wars (1924–1927 and 1927–1937); the resistance war against Japanese aggression (1937–1945); and the liberation war (1945–1949).

References

Promoting creativity in Chinese classrooms

Zhaocun Li and Amber Johnston

Tao, X. (1945). Outline of democratic education [in Chinese]. *Education During the War, 9*(2), 9–12.

