The Routledge Handbook of Spanish as a Heritage Language

Kim Potowski, Javier Muñoz-Basols

Sociolinguistic Variation in U.S. Spanish

Publication details
https://www.routledgehandbooks.com/doi/10.4324/9781315735139-17
Rena Torres Cacoullos, Grant M. Berry
Published online on: 08 May 2018

How to cite :- Rena Torres Cacoullos, Grant M. Berry. 08 May 2018, Sociolinguistic Variation in U.S. Spanish from: The Routledge Handbook of Spanish as a Heritage Language Routledge
Accessed on: 14 Sep 2023
https://www.routledgehandbooks.com/doi/10.4324/9781315735139-17

PLEASE SCROLL DOWN FOR DOCUMENT

Full terms and conditions of use: https://www.routledgehandbooks.com/legal-notices/terms

This Document PDF may be used for research, teaching and private study purposes. Any substantial or systematic reproductions, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The publisher shall not be liable for an loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
The social context of Spanish in the U.S.: conceptual and methodological challenges

The neglect of sociolinguistic patterns of language variation in U.S. Spanish is due at least in part to the abiding preoccupation with contact-induced change and a methodological predilection for acceptability judgments, experimental tasks, or cherry-picked examples. This “Hispanic tradition” of language study as Bills (1975: vi–vii) characterized it nearly half a century ago is hampered by an “interest in the accumulation of speech fragments with little concern for linguistic or sociological context” and “almost exclusive interest in deviations from standard Spanish.” Adherence to the analyst’s idealizations as the benchmark for evaluations leaves working-class varieties of U.S. Spanish in a no-win situation, as pointed out by Ana Celia Zentella; for example, New Mexican Spanish is branded ‘archaic’ “porque se describe en referencia a la norma de otra comunidad [because it is described in reference to the norm of another community],” but “tampoco se vale ser innovador . . . al notar la reacción . . . en contra de . . . lonche . . . y otros préstamos [it isn’t worth being innovative either . . . when one considers the reaction . . . against . . . lonche . . . and other borrowings]” (1990: 157).

Methodological issues begin with data collection. As Peñalosa (1981: 7) asserted, appropriate data come from “Labovian-type studies of Chicano speech in a natural setting.” This is because the vernacular—the unreflecting use of language in the absence of the observer, when minimum attention is paid to monitoring speech—is the style that is most regular in structure (Labov 1972: 112). In contrast, when speakers of subordinate varieties are asked direct questions about their language, as is the case with acceptability judgments, their answers shift toward (or away from) the prestige variety in irregular and unforeseeable ways (Labov 1972: 111). Whether data are gathered by an in- or out-group member has also been demonstrated to make a difference, for example in rates of word-final nasal velarization by Salvadorans interviewed by a Mexican in Houston (Hernández 2011: 67).

When we turn our attention to community-based samples of vernacular speech, social factors in tandem with linguistic constraints become important for diagnosing stability vs. change in U.S. Spanish varieties; these factors also serve to detect parallels vs. divergences vis-à-vis Spanish varieties spoken outside the U.S. across the Americas (e.g., Otheguy and Zentella 2012). Moreover, even for assessing contact-induced change, it has become
clear that neglect of the social context of bilingualism is risky, because once speakers are adequately characterized with respect to social factors, phenomena attributed either to majority language influence or to minority language loss may turn out to be conditioned by social class instead.

An instructive example concerns use of the subjunctive mood, which undergoes attrition among at least some second- and third-generation speakers of Spanish in the U.S. (e.g., Ocampo 1990; Silva-Corvalán 1994: 86–90). A parallel presumed loss of the French subjunctive in Canada is imputed to contact with English. To test this, Poplack (1997) considered external measures of contact at the individual and community level. If contact with English is playing a role, speakers with higher English proficiency and those living in neighborhoods with a higher proportion of English speakers should show a lower rate of the subjunctive than speakers with lower indices of contact with English. Neither measure of contact correlated with subjunctive rate. Instead, after accounting for a strong lexical effect of the governing verb, systematic quantitative analysis of both internal and external constraints exposed the unsuspected effect of social class, with professionals displaying a proclivity for the subjunctive (Poplack and Levey 2010: 402–404). Moreover, subjunctive use is characterized not by change, but by long-term stable variability, despite centuries of normative injunctions (Poplack, Lealess and Dion 2013).

In this chapter, we survey the scant number of reports on social factors in U.S. Spanish, first for stable linguistic variables—those with distribution patterns that persist across time and communities—and then for possible changes in progress—where age distributions are gradient. In the final section, we apply statistical procedures (principal component analysis and regression analysis) to a community-based corpus of New Mexican Spanish to infer and test social factors relevant to conditioning language variation.

Social class and gender in stable variation

The “central dogma” of sociolinguistics stated by Labov is that “the community is prior to the individual” (Labov 2006: 5). Individual speaker behavior can be understood only once the community pattern is known, since individual linguistic behavior results from social histories and memberships. For Spanish-speaking communities in the U.S., the social factor most considered, though often in isolation, has been speaker gender. Usually, gender is implicated in claims of changes in progress, with women being seen in some cases as conservative and in others as leaders of linguistic change. Hasty pronouncements of change can stem from equating language change with perceived departures from an idealized norm or even with ordinary variation; that is, failing to differentiate between situations of stable variation and situations of change in progress. Crucially, while all change implies the existence of variability in language, the converse is not true: “not all variability and heterogeneity in language structure involves change” (Weinreich, Labov and Herzog 1968: 188).

The “gender paradox” is the pattern of gender differentiation whereby “women conform more closely than men to sociolinguistic norms that are overtly prescribed, but conform less than men when they are not” (Labov 2001: 292–293). This follows from two generalizations for the distinct scenarios of variation: women use stigmatized variants at lower rates than men for stable sociolinguistic variables, but they adopt innovative forms earlier, both for prestige variants and for linguistic changes from below, i.e., changes from within the system which occur below the level of conscious awareness and consequently lack style shifting in initial stages (Labov 2001: 261–293).

A stable sociolinguistic variable in Spanish is variation in the realization of the forms of the copula estar. This dates back approximately half a millennium, judging from the
recommendation of Juan de Valdés (1535) that the verb be written without e- to distinguish it from the demonstrative pronoun esta:

[m]e ha parecido, por no hacer tropezar al lector, poner la e cuando son pronombres, porque el acento está en ella, y quitarla cuando son verbos, porque, estando el acento en la última, si miráis en ello, la primera e casi no se pronuncia, aunque se escriba [It has seemed a good idea to me, in order not to trip up the reader, to put the letter e before the words that are pronouns, because it is accented there, and not to include it in verbs, because, being that the accent is on the last syllable, if you think about it, the first e is almost not pronounced, even though it is written].

Drawing on 32 interviews recorded in San Antonio with Mexican Americans raised in South Texas, Garcia and Tallon (2000) examined three variants of estar: está, ‘stá (with apheresis of the vowel) and ‘tá (N = 1,025) in multivariate analysis. They find phonological conditioning by preceding segment. In addition, and in accordance with the generalization for stable variation, female speakers favored “canonical” está, while males favored the ‘tá variant, leading the authors to suggest that the latter may be “the least formal variant” and “a marker of male speech” (Garcia and Tallon 2000: 356–357).

Another variable showing social stratification is the alternation between para and pa’. This is conditioned by morphosyntactic and phonological, but also social factors. A study based on data extracted from recordings with 171 speakers in San Antonio (token numbers not reported) indicates that males use the abbreviated form of the preposition at nearly double the rate of females (42% vs. 23%) (Lantolf 1982). What is more, gender interacts with education and occupation: although males display a higher rate of pa’ across all occupation and education levels, the gender difference is as high as 48 percentage points for blue-collar workers and as low as 5 for professionals, with a 20-point difference within white-collar workers (the largest group sampled) (Lantolf 1982: 172). Considering internal factors, the reduced form was favored in directional (locative) uses (Lantolf 1982: 167). The social and linguistic conditioning of para ~ pa’ in San Antonio parallels that found outside the U.S. Based on two analyses in Venezuelan corpora (48 speakers and 1,599 tokens in one, 72 speakers and 2,144 tokens in the other), Bentivoglio and Sedano (2011: 169–171) report that expressions of directionality are favorable contexts for pa’ (me fui pa Nueva York ‘I went to New York’), while para is preferred for purposives (para terminar ‘in order to finish’), and furthermore that following consonants promote the abbreviated form (as in pa’ comprar ‘in order to buy’), but that the strongest effect is that of socioeconomic level: the “low level” showed the highest rates of the reduced variant pa’.

A class-based account is also proposed for a higher Spanish subject pronoun rate among Colombians and possibly Cubans who have lived in New York City for more than five years as compared with newcomers from those same countries. Shin and Otheguy (2013: 442–443) point to the high affluence rankings of these Latino national-origin groups in Census data, offering the conjecture that affluent Latinos are susceptible to influence from English due to looser social networks and more interaction with speakers of English. However, among the Colombians and Cubans sampled (N = 45), no effect is found for social class or education. Nevertheless, a “woman effect” is reported, which is most pronounced among those who were Latin-American born but had lived in NYC more than five years (Shin and Otheguy 2013: 439). While the gender effect among Colombians and Cubans may be because, as suggested by Shin and Otheguy (2013: 446), women have more contact with U.S.-born children or friends than men do, it also may be the case that women have higher rates of pronominal subject expression than men in Colombia to begin with (Orozco 2015: 30; see also Martín Butragueño and Lastra 2015: 50).
Understanding variation in Spanish among Latino New Yorkers necessitates knowledge of their social context (Otheguy and Zentella 2012: 149–150), in the same way that it is imperative to distinguish language contact settings due to immigration, as a result of conquest, or across national boundaries (Guadalupe Valdés 1982; cf. Poplack and Levey 2010: 396–397). The hypothesis of susceptibility to English or other-dialect influence would necessarily be tested by measures of degree of contact. Such measures have relied on self-reports, for example, speakers have been divided into in-group vs. out-group orientation groups based on reported frequency of interactions with speakers from other dialect regions (Otheguy and Zentella 2012: 109–112). Metrics for degree of contact with English may be derived from demographic data; in particular, the proportion of Spanish vs. English speakers in neighborhoods of residence (see Poplack and Levey 2010: 399, 402). A parallel measure could be applied to gauge participants’ level of interaction with speakers of other dialects, as has been done for contact between Salvadorans and Mexicans in Houston (Hernández 2009: 598–600). Direct measures of contact are best developed from sociolinguistic profiles culled from content analysis of recorded conversations constituting a corpus; for example, concerning time and location of acquisition of English, preferred or “most comfortable” language, language choice according to interlocutor, and general affect toward the bilingual situation (Poplack, Walker and Malcolmson 2006: 196–207; Torres Cacoullos and Travis 2018: 62–71).

Poplack’s (1979) dissertation with Puerto Ricans living in Philadelphia remains a model study that has yet to be repeated in a U.S. Spanish community. Based on 24 sociolinguistic interviews collected from a neighborhood block in Philadelphia over a period of one year (Poplack 1979: 28–37), it was one of the first to apply rigorous statistical analysis (logistic regression and principal component analysis) to data on linguistic variation and show the effects of social predictors. Of the 24 participants, 15 were female, and most were working class or unemployed and had limited formal education and social mobility (Poplack 1979: 38–43). Poplack tested gender, age, education, language proficiency, and geographic origin (1979: 48–50) as they conditioned lenition of coda /s/ (N = 19,284), /n/ (N = 8,648), and /r/ (N = 7,142) (1979: 64, 108, 143). While there was very limited social conditioning of /n/ lenition (cf. Poplack 1979: 123, 127) for monomorphemic /r/ she found an increased lenition rate for males (Poplack 1979: 165), while for infinitival /r/ she found a slight effect of education (Poplack 1979: 172). With respect to coda /s/ lenition, social factors were particularly important. For plural /s/, only geographic origin and language proficiency were selected by the model (Poplack 1979: 86). For monomorphemic and verbal coda /s/, however, Poplack found that each of the five social factors tested (age, speech style, education, geographic origin, and language proficiency) conditioned lenition in word-final position (1979: 75, 96). It is important to note that the speakers studied here were from an immigrant population with a relatively short history (less than 50 years) in Philadelphia, which raises the question of the role of social factors given varying degrees of community stability and geographic permanence.

Changes in progress

Linguistic change in Spanish in the U.S. is often proclaimed, though not as often demonstrated. Making a reasonable case for language change requires, above all, a robust quantitative pattern, which is verified in the speech of a community-based sample of speakers selected in a principled manner (Poplack et al. 2012). Changes in progress can be detected synchronically in apparent time—the distribution of variant forms across age cohorts (Labov 1994: 43–72).

For example, in her pioneering sociolinguistic study of Panama City in 1969–71, Henrietta Cedergren (1973) observed a process of deaffrication from [ʃʃ] to the fricative [ʃ] in apparent
time, with an inverse relationship between lenition and age. The lenited variant increased as age decreased, peaking in the second youngest age group of 27- to 32-year-olds and slightly declining in the 15–26 group. Cedergren obtained data using the same sampling procedure in 1983 to see whether real-time evidence would suggest a genuine change in progress or age-grading—that is, change with age that repeats in each generation and results in stable community behavior in aggregate. In fact, her comparison revealed age-grading—the same pattern was followed across apparent time at each point in real time—but with lenition incrementally higher for all but the two youngest groups; this is interpreted to mean that [tʃ] lenition in this community had peaked (Labov 1994: 94–97).

Deaffrication of [tʃ] showed a correlation with age in Tomé, in the Río Abajo region of New Mexico, just south of Albuquerque. Excluding postnasal and postlateral cases (planchar ‘to iron,’ el chile ‘the chili pepper’), which are categorically realized as affricates, Jaramillo and Bills (1982) give an apparent time interpretation to the distribution of the variants across age groups in a sample of 36 speakers (N = 1,029). They find a shift from the fricative variant to the affricate, as the rate of [ʃ] is nearly halved in the youngest (17–30) age group compared to approximately 80% in the older groups. The interpretation of a shift toward the more standard pronunciation is supported by considering the effect of education, operationalized as years of formal instruction. Since age and educational attainment partially overlap (a greater proportion of younger than older people had college education), Jaramillo and Bills (1982: 161) cross-tabulated age and education and found an independent effect for education. In fact, within the young group, eight speakers with a college education had a lenition rate approximately four times lower than that of the other four young speakers. Speakers with more than two years of formal study of Spanish also tended to lenite less often. The researchers conclude that the “perceived change” away from the “long-established” fricative variant “appears to simply reflect a sociological change related to education” whereby some residents are “expanding their command of different varieties of Spanish” (Jaramillo and Bills 1982: 163–164).

Change in progress may be inferred from comparison of variation patterns in communities of origin. In Salvadoran communities, sequences of front vowels in hiatus with other vowels (as in rea ‘he/she/you(formal) sees (Subj)’) alternate with a hiatus-breaking [ʝ] variant (reyá) (Lipski 1994: 258). Hernández (2015) compared rates and conditioning of the hiatus-breaking [ʝ] variant for the immigrants in Houston to comparable data from San Sebastián, El Salvador, the municipality of origin for most families. He reports that the rate of hiatus-breaking [ʝ] in Houston (6%, N = 737) is less than a third of that in San Sebastián (20%, N = 811), receding to 2% (N = 288) in the second immigrant generation. While in San Sebastián the hiatus-breaking variant was favored by older speakers and disfavored by women and those with a secondary school education, in Houston, with the now overwhelming preference for the hiatus variant, none of the social factors investigated—education level, gender, and age of the speaker—make a statistically significant contribution.

Contrariwise, speaker gender does appear to contribute to linguistic variation in Kennett Square, Pennsylvania, though in a diminished way. Matus-Mendoza (2004) analyzed variable assibilation of word-final /ɾ/ to a voiceless retroflex sibilant (/ɾ/ → [ɾ] \ __#; e.g., deci[ɾ] ‘to say, tell’) in a corpus of 83 sociolinguistic interviews with speakers in Moroleón, Guanajuato and Kennett Square, where many mushroom industry workers are from Moroleón. The linguistic conditioning of assibilated /ɾ/ was the same in Moroleón (N = 2,796; Matus-Mendoza 2004: 21) and Kennett Square (unknown N). As for extralinguistic factors, rates in Moroleón differed across locales, with more frequent assibilation in urban than in rural areas, and across genders, with women assibilating more than men (Matus-Mendoza 2004: 20–22). Differences according to occupation and education level also indicate that assibilation is a prestige variant.
in Mexico (Matus-Mendoza 2004: 26–27). In Kennett Square, the rates of assimilation increase with more schooling and among women, but the percentages are “extremely low . . . compared to . . . Moroleón” (6% among women in Kennett Square vs. 24% in Moroleón), suggesting an “equalizing situation” in the shared working environment (Matus-Mendoza 2004: 27).

Contraction of a phonetic variant has also occurred in Houston, where Salvadorans live and work alongside Mexicans. Composition of neighborhoods of residence provides one measure to approximate degree of dialect contact. In Houston’s Segundo Barrio, Hispanics make up 90% of the population and the ratio of Salvadorans to Mexicans is on the order of one-to-ten, while in Holly Spring, where Hispanics constitute just 12% of the population, it is closer to one-to-two (Hernández 2011: 55). Hernández (2011) capitalizes on this difference to compare variable word-final nasal velarization (/n/\[ŋ\] _#, as in los pueblos fueron \[ˈfwe.ɾon\] los que sufrieron [su.ˈɾje.ɾon] más ‘the towns were the ones that suffered the most’) in three Salvadoran communities. The rate of nasal velarization declines in Houston compared with San Sebastián, El Salvador, the community of origin (23%, N = 430), but more so in Segundo Barrio (3%, N = 476) than in Holly Spring (14%, N = 981) (Hernández 2011: 66). On this basis, Hernández proposes that differences between the two Houston communities are explained by amount of exposure to speakers of Mexican Spanish (cf. Trudgill 1986: 39). One scenario of possible change in progress in a U.S. Spanish immigrant community, then, is dropping an alternation that constitutes a linguistic variable in the community of origin (see Weinreich [1968: 18–19], and Erker this volume, on Spanish dialectal contact in the U.S.).

A contrary development may be the spread of a new linguistic variable. This appears to be the case with intervocalic ⟨ll⟩ ⟨ʝ⟩ deletion (e.g., iba a ir el bus por eØa a Brownsville ‘the bus was going to go to Brownsville for her’ vs. estudiar a Matamoros con ella ‘to study in Matamoros with her’) in the Segundo Barrio and Holly Spring neighborhoods in Houston. Hernández (2015) compared speech data from sociolinguistic interviews conducted among Salvadoran and Mexican immigrants. The participants were first generation, second generation or (in the case of the Mexican speakers) third generation, and most were from families from San Sebastián, El Salvador, or Matamoros, Mexico. The rate of intervocalic ⟨ll⟩ deletion in Houston is twice as high in the second and third than in the first generation among Mexicans (N = 383) and three times as high in the second generation than in the first among Salvadorans (N = 622) (Hernández 2015). This means that second–generation Mexican and Salvadorans show a closer elision rate (31% and 23%, respectively) than do their first–generation counterparts (17% and 5%, respectively). Though not significant in the multivariate analysis, there appears to be a tendency for higher elision rates for men than women, in both national origin groups, for this expanding phonological variable.

As indicated by the studies surveyed in this chapter, linguistic realizations and social categories are linked, yet social factors remain understudied—particularly socio-economic status. Common belief holds that linguistic patterns in U.S. Spanish are unaffected by speakers’ socio-economic status (Bills and Vigil 2008: 250). Some researchers even assert that speakers’ occupation or education should not be expected to correlate with minority language patterns since Spanish is not instrumental for success in the employment market (e.g., Garcia and Tallon 2000: 358, n.1). Contributing to the lack of studies of social factors is the problem of grouping speakers according to sociological characteristics. This is at least no less exacting in minority-language situations than elsewhere, as the appropriateness of the criteria must be independently established for each community. For example, a solution for immigrant communities is offered by Orozco (2007: 105), who classified NYC Colombians into three groups by taking into consideration their occupations both in NYC and in Colombia: those who retained white-collar jobs, blue-collar workers before and after immigration, and blue-collar workers in NYC who held white-collar positions in Colombia.
But a remaining problem in general is that social categories, unlike linguistic categories, have no standard or agreed-upon methods of demarcation. An additional obstacle is that social groupings often correlate with one another, and as such it is disadvantageous to include them in a statistical model. We now illustrate an alternative approach which can circumvent this problem by grouping speakers based on their linguistic behavior to infer social grouping.

Predicting social variation with linguistic behavior: clustering and stratification in New Mexican Spanish

Hints of the social conditioning of variable usage can already be discerned in the earliest linguistic study of Spanish in the U.S. Over a century ago, Espinosa (1911: 10) in *The Spanish Language in New Mexico and Southern Colorado* suggests a social evaluation of the aspirated variant of /s/, qualifying it as “widespread among the rural uneducated classes.” Dating back to 16th–17th-century settlement from New Spain (today, Mexico), Northern New Mexico is home to (Traditional) New Mexican Spanish. As Lipski (2000: 2–4) has noted, New Mexican Spanish was deemed by Espinosa and contemporary linguists in Latin America and Spain to be nothing less than another national variety of the language.

In New Mexico, it is the speakers of English, not Spanish, who are (descendants of) immigrants. In 1850, the area became a U.S. territory, and in 1878, the railroad arrived along with accelerating Anglo-American immigration. In 1912, New Mexico was admitted to the Union as the 47th state and English increasingly displaced Spanish in schools—even in northern, long-standing Spanish-speaking communities—by the 1940s. Today Spanish is taught as a foreign language and, while Hispanics represent as much as 80% of the population in some northern counties, there is a continued shift toward English (Bills and Vigil 2008, *inter alia*). The remaining speakers of New Mexican Spanish provide an invaluable window into Spanish language use in a native community.

The New Mexico Spanish–English Bilingual (NMSEB) corpus consists of spontaneous speech collected by in-group community members and thoroughly transcribed in prosodic units. Participants were selected to cover a range of demographic backgrounds to permit the assessment of extra-linguistic constraints on linguistic variation (Travis and Torres Cacoullos 2013; Torres Cacoullos and Travis 2018: 24–33).

To identify those social factors that may contribute a consistent effect on linguistic variation in the data, we cast a wide net by looking at the problem in reverse (Horvath and Sankoff 1987; Poplack 1979: 190–223). We will use the linguistic behavior of speakers in NMSEB to cluster them via a principal component analysis (PCA), and then interpret the resultant configurations in terms of our extralinguistic knowledge of the speakers to identify the social characteristics that individuals within those clusters have in common. PCA is a data optimization method used to partition a multidimensional space into several orthogonal components that reduce the dimensionality of that space; the dimensions that contribute toward partitioning the variance of that space are called the principal components. A PCA works best when there is a high amount of variance in the space; typically, this is found when each row vector (in this case, speaker) has more than ten numeric variables, or dimensions (in this case, linguistic features) (cf. Horvath and Sankoff 1987: 186).

We focus on four phonetic variables, which yield 14 such dimensions: onset (syllable-initial) /s/ lenition, coda (syllable-final) /s/ lenition, intervocalic /d/ elision, and intervocalic ⟨ll⟩ lenition. Each of these has been studied and implicated as either characteristic of New Mexican Spanish or as a stable, socially stratified variable in other dialects of Spanish (e.g., Espinosa 1909: 78).
Onset /s/ lenition: Favoring and other contexts. Since onset /s/ lenition was most strongly favored by preceding non-high vowels—as in ese ‘that one’ or la señora ‘the woman’ (cf. Brown 2005a)—counts of onset /s/ in favorable phonetic contexts (preceding non-high vowels) were separated from counts of onset /s/ in other phonetic environments. Additionally, since complete elision of onset /s/ was rare, tokens were divided into full ([s]) and lenited variants and counts were included separately. Doing so produced counts of four variants: full onset /s/ preceded by a non-high vowel, lenited onset /s/ preceded by a non-high vowel, full onset /s/ in other contexts, and lenited onset /s/ in other contexts.

Coda /s/: Favoring and other contexts. Lenition was most strongly favored when the following phone was a voiced consonant, as in desde ‘since/from’ or los viejitos ‘the old people’ (cf. Brown 2005b). Unlike onset /s/, coda /s/ showed a mix of full ([s]), aspirated ([h]), and elided (Ø) variants, so we considered counts of each separately. This produced six additional variants per speaker (each of the three variants followed by a voiced consonant and in other environments).

Intervocalic /d/ elision: We take counts of intervocalic approximants against the number of elided intervocalic tokens (in which there was no perceptible frication as well as audible vowel coarticulation, e.g., casado [kasau]; casada [kasa=] ‘married’).

⟨ll⟩ lenition: In words like ellos ‘they/them,’ reduced and completely elided forms were grouped together.

In all, there were 14 variants across the 4 phonetic variables. Since onset and coda /s/ were further subdivided by phonetic environment, this produced six categories: onset /s/ in a favorable environment for lenition, onset /s/ in other environments, coda /s/ in a favorable environment for lenition, coda /s/ in other environments, intervocalic /d/, and intervocalic ⟨ll⟩. If a participant had fewer than 20 tokens in total for any of these categories (summing up all variants within those categories), their counts for all variants in that category were zeroed out to keep low token counts from warping the PCA output. The principal components resulting from the PCA were then plotted based on the amount of variance each principal component accounted for. Three principal components accounted for 78% of the total variance in the dataset. We then examined the associations of each of the 14 variants with each of these three principal components. Many of the variants showed moderate associations, or loadings (with magnitude greater than 0.3; \(|\text{PC}_x| > 0.3\); cf. Horvath and Sankoff 1987: 194), indicated by bolded text and cell shading in Table 17.1; variants with weaker associations (0.25 ≤ \(|\text{PC}_x| < 0.3\)) are listed in bold without shading.

We interpret the loadings as follows. Principal Component 1 (PC1), which accounts for 46% of the variance, appears to represent lenition in general. That is, speakers who have (negative) associations with this component are more likely than other speakers to aspirate onset /s/ and will also tend to lenite (aspirate) coda /s/ and to use lenited intervocalic ⟨ʝ⟩ as well. Principal Component 2 (PC2), accounting for another 21% of the variance, is largely the complement of PC1. Here retention of full variants is (positively) associated with PC2,5 PC 3, which accounts for 11% of the total variance, is more complicated. Both onset /s/ retention in other than preceding non-high-vowel environments (i.e., in disfavorable contexts for /s/ aspiration) and coda /s/ lenition, especially Ø, pattern in the same direction (negatively), and these are contrasted with intervocalic ⟨ll⟩ lenition and, though its association is marginal, onset /s/ aspiration in preceding non-high-vowel contexts. This component, then, groups more standard and general Spanish linguistic patterns, namely onset /s/ retention and coda /s/ lenition, in opposition to traditional New Mexican variants, that is, intervocalic ⟨ll⟩ lenition and onset /s/ aspiration.
Effectively, the PCA has taken a 14-dimensional space representing each variant of our 4 variables and reduced it to a three-dimensional space where highly correlated items pattern together. This permits a spatial representation of the data, which can elucidate similarities in speaker behavior, but it also, crucially, illustrates the associations of the phonetic variants to one another. Through such an analysis, we apprehend that participant groupings are strongly determined by patterns of lenition.

With a general linguistic interpretation of the principal components in mind, we then ask how individual speakers associate with each of the principal components. In Figure 17.1, by plotting each participant according to their loading on the first two Principal Components, and letting the shading indicate the third Principal Component, we capture the results of the PCA visually and use those results to cluster participants. In doing so, we observe that the participants naturally fall into three main groups, primarily delineated by PC1 (indicated by shape in Figure 17.1).

Using these speaker clusters based on linguistic behavior, we compared sociodemographic characteristics of the speakers to assess what was shared among most members. Group 1 mostly consists of miners, factory workers, or ranchers who are men with a middle or high school education. Group 2 is mainly constituted by middle- or high-school-educated men and women, some in production (e.g., factory workers), and some in service (e.g., in dry cleaning) occupations. Group 3 is a more urban, predominately female group, in which we find most of the participants with (some) college education and/or professional occupations (e.g., teachers).

Based on these clusters, then, it appears that socioeconomic status (occupation and education), gender, and rural vs. urban locale should be considered as candidates for conditioning linguistic variation in NM Spanish. For a composite socioeconomic index based on occupation and education, we grouped speakers into ‘production workers’ (N = 14), ‘service employees’ (N = 15), and ‘professionals’ (N = 9). There were 22 women and 16 men. As to locale, ‘urban’ were those participants from cities with 10,000 or more residents (Albuquerque, Española, Las Vegas, Los Lunas, Santa Fe) (N = 11).

Table 17.1 Loadings of 14 consonantal variants in New Mexico (NMSEB) on principal components

<table>
<thead>
<tr>
<th>Variable</th>
<th>Variant (Dimension)</th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset /s/</td>
<td>[s].Preceding NonHighV</td>
<td>0.24</td>
<td>0.40</td>
<td>-0.11</td>
</tr>
<tr>
<td></td>
<td>[h].Preceding NonHighV</td>
<td>-0.33</td>
<td>-0.11</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>[s].Other environments</td>
<td>0.13</td>
<td>0.38</td>
<td>-0.45</td>
</tr>
<tr>
<td></td>
<td>[h].Other environments</td>
<td>-0.31</td>
<td>-0.03</td>
<td>0.21</td>
</tr>
<tr>
<td>Coda /s/</td>
<td>[s].Following Voiced C</td>
<td>0.20</td>
<td>0.34</td>
<td>-0.15</td>
</tr>
<tr>
<td></td>
<td>[h].Following Voiced C</td>
<td>-0.30</td>
<td>0.13</td>
<td>-0.33</td>
</tr>
<tr>
<td></td>
<td>ø.Following Voiced C</td>
<td>-0.28</td>
<td>0.09</td>
<td>-0.40</td>
</tr>
<tr>
<td></td>
<td>[s].Other environments</td>
<td>0.28</td>
<td>0.30</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>[h].Other environments</td>
<td>-0.34</td>
<td>0.05</td>
<td>-0.26</td>
</tr>
<tr>
<td></td>
<td>ø. Other environments</td>
<td>-0.28</td>
<td>-0.09</td>
<td>-0.36</td>
</tr>
<tr>
<td>Intervocalic /d/</td>
<td>Approximant intervocalic /d/</td>
<td>-0.15</td>
<td>0.43</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>Elided intervocalic /d/</td>
<td>-0.25</td>
<td>0.31</td>
<td>0.21</td>
</tr>
<tr>
<td>Intervocalic ⟨ʝ⟩</td>
<td>Full intervocalic ⟨ʝ⟩</td>
<td>-0.23</td>
<td>0.34</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>Lenited intervocalic ⟨ʝ⟩</td>
<td>-0.30</td>
<td>0.21</td>
<td>0.32</td>
</tr>
<tr>
<td>Variance accounted for:</td>
<td>46%</td>
<td>21%</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>Interpretation:</td>
<td>Lenition (general), retention (general), except /d/</td>
<td>NM Spanish vs. other dialects</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To obtain additional evidence that these social factors may be predictors of variation, we determined whether they were distributed unevenly among the three speaker clusters, via Fisher’s exact tests. According to these, gender ($p < 0.05$) was disproportionately distributed among groups, with males being more common in Group 1 and females in Group 3. Subsequently, Fisher’s exact tests conducted pairwise indicated that occupation-education was also differentially distributed across Groups 1 and 3 ($p < 0.05$), suggesting that both social class and gender may be useful categories for conditioning linguistic behavior. Additionally, there seems to be a slight bias toward rural speakers in Group 1 (7 of 8 are rural), though this does not reach statistical significance. Thus, we include Rural vs. Urban locale as a social predictor, understanding that this characteristic may not be as robust as gender or socioeconomic status in distinguishing participants’ linguistic behavior.

These three social predictors were considered together with linguistic factors in generalized linear mixed models (conducted using the lme4 package [Bates et al. 2014] in R [R Core Team 2015]). A separate model was fit for each of the four phonetic variables, and this model was compared to models with only linguistic and only social predictors (via likelihood ratio tests). While both onset and coda /s/ lenition were primarily determined by linguistic factors (as also reported by Brown 2005a, 2005b), model fits for intervocalic /d/ elision and ⟨ll⟩ lenition improved with the inclusion of a combination of linguistic and social predictors.

Tables 17.2 and 17.3 show the results of generalized linear mixed models for intervocalic /d/ elision and ⟨ll⟩ lenition, respectively. The Intercept refers to the estimated log-likelihood of a dependent variable at a given reference level (reference levels are listed below each table). Levels of each predictor are assigned a weighting (β-coefficient), or Estimate, with positive values indicating an increased likelihood and negative values indicating a decreased likelihood for a given level (factor). For example, in the case of intervocalic /d/ elision, the positive Estimate for a preceding non-high vowel suggests that this phonetic context increases the likelihood of elision. Also indicated in the model outputs is significance (determined by estimated p-values computed via a Wald test).

Intervocalic /d/ deletion is strongly affected by social class. In agreement with reports on Latin American varieties of Spanish including Panamanian (Cedergren 1973) and Venezuelan

Figure 17.1 Grouping of NMSEB speakers by linguistic behavior (from PCA)
Table 17.2 Social and linguistic factors conditioning intervocalic /d/ elision in NMSEB (N = 3,447)∗

<table>
<thead>
<tr>
<th>Factor</th>
<th>Estimate</th>
<th>Std. error</th>
<th>Sig.</th>
<th>N</th>
<th>% Elision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>−3.74</td>
<td>0.54</td>
<td>***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preceding non-high V</td>
<td>3.08</td>
<td>0.57</td>
<td>***</td>
<td>2,788</td>
<td>16%</td>
</tr>
<tr>
<td>(Preceding high V)</td>
<td></td>
<td></td>
<td></td>
<td>659</td>
<td>3%</td>
</tr>
<tr>
<td>Participle</td>
<td>1.65</td>
<td>0.59</td>
<td>**</td>
<td>471</td>
<td>34%</td>
</tr>
<tr>
<td>(Not a participle)</td>
<td></td>
<td></td>
<td></td>
<td>2,976</td>
<td>10%</td>
</tr>
<tr>
<td>Production vs. other occupations</td>
<td>−1.28</td>
<td>0.42</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service vs. professional</td>
<td>−0.12</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Production occupation)</td>
<td></td>
<td></td>
<td></td>
<td>1,753</td>
<td>18%</td>
</tr>
<tr>
<td>(Service occupation)</td>
<td></td>
<td></td>
<td></td>
<td>1,132</td>
<td>10%</td>
</tr>
<tr>
<td>(Professional occupation)</td>
<td></td>
<td></td>
<td></td>
<td>444</td>
<td>9%</td>
</tr>
<tr>
<td>Rural locale</td>
<td>−0.09</td>
<td>0.29</td>
<td></td>
<td>2,376</td>
<td>14%</td>
</tr>
<tr>
<td>(Urban locale)</td>
<td></td>
<td></td>
<td></td>
<td>1,065</td>
<td>12%</td>
</tr>
<tr>
<td>Men</td>
<td>0.60</td>
<td>0.29</td>
<td>*</td>
<td>1,633</td>
<td>17%</td>
</tr>
<tr>
<td>(Women)</td>
<td></td>
<td></td>
<td></td>
<td>1,808</td>
<td>11%</td>
</tr>
<tr>
<td>Preceding non-high V: participle</td>
<td>1.52</td>
<td>0.78</td>
<td>*</td>
<td>320</td>
<td>48%</td>
</tr>
<tr>
<td>(Prec. non-high V, non-participle)</td>
<td></td>
<td></td>
<td></td>
<td>753</td>
<td>14%</td>
</tr>
<tr>
<td>(Prec. high V, participle)</td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>3%</td>
</tr>
<tr>
<td>(Prec. high V, non-participle)</td>
<td></td>
<td></td>
<td></td>
<td>288</td>
<td>1%</td>
</tr>
</tbody>
</table>

∗Generalized linear mixed model, lme4 package (Bates et al. 2014) in R (R Core Team 2015)

Random effects (SD): Speaker (0.55); Word (2.01)

Reference level: /d/ present, prec high V, non-participle, urban, female

| *** p<0.001 | ** p<0.01 | * p≤0.05 |

Table 17.3 Social and linguistic factors conditioning intervocalic ⟨ll⟩ lenition in NMSEB (N = 1,335)∗

<table>
<thead>
<tr>
<th>Factor</th>
<th>Estimate</th>
<th>Std. error</th>
<th>Sig.</th>
<th>N</th>
<th>% Lenition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>−0.15</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preceding front V</td>
<td>−0.04</td>
<td>0.86</td>
<td></td>
<td>600</td>
<td>74%</td>
</tr>
<tr>
<td>(Preceding non-front V)</td>
<td></td>
<td></td>
<td></td>
<td>735</td>
<td>49%</td>
</tr>
<tr>
<td>Following front V</td>
<td>0.26</td>
<td>0.56</td>
<td></td>
<td>26</td>
<td>46%</td>
</tr>
<tr>
<td>(Following non-front V)</td>
<td></td>
<td></td>
<td></td>
<td>1,309</td>
<td>61%</td>
</tr>
<tr>
<td>Asymmetry in height</td>
<td>0.89</td>
<td>0.50</td>
<td></td>
<td>1,222</td>
<td>59%</td>
</tr>
<tr>
<td>(Symmetry in height)</td>
<td></td>
<td></td>
<td></td>
<td>113</td>
<td>74%</td>
</tr>
<tr>
<td>Production vs. other occupations</td>
<td>−0.8</td>
<td>0.35</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service vs. professional</td>
<td>0.13</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Production occupation)</td>
<td></td>
<td></td>
<td></td>
<td>784</td>
<td>67%</td>
</tr>
<tr>
<td>(Service occupation)</td>
<td></td>
<td></td>
<td></td>
<td>365</td>
<td>54%</td>
</tr>
<tr>
<td>(Professional occupation)</td>
<td></td>
<td></td>
<td></td>
<td>186</td>
<td>43%</td>
</tr>
<tr>
<td>Rural locale</td>
<td>0.55</td>
<td>0.36</td>
<td></td>
<td>1,000</td>
<td>63%</td>
</tr>
<tr>
<td>(Urban locale)</td>
<td></td>
<td></td>
<td></td>
<td>335</td>
<td>51%</td>
</tr>
<tr>
<td>Men</td>
<td>0.02</td>
<td>0.36</td>
<td></td>
<td>753</td>
<td>63%</td>
</tr>
<tr>
<td>(Women)</td>
<td></td>
<td></td>
<td></td>
<td>582</td>
<td>56%</td>
</tr>
</tbody>
</table>
Intervocalic /d/ elision is favored in working class speech. Also replicating reported patterns, men elide intervocalic /d/ more often than women. The primary factors conditioning intervocalic /d/ elision, however, are still linguistic. Phonetic context and participle status work together to vastly increase lenition rates with participles from the first conjugation (−ado) relative to non-participles when the preceding phone is a non-high vowel. Intervocalic ⟨ll⟩ lenition is also conditioned by a combination of social and linguistic factors. We find that while the strongest predictors of ⟨ll⟩ lenition—phonetic context—are linguistic, there is also an effect of occupation: speakers from production occupations lenite ⟨ll⟩ most often, followed by speakers from service and professional occupations.

Conclusion

Although social factors in U.S. Spanish have received inadequate attention to date, the few available reports confirm the need to account for sociolinguistic variation. As we have seen, where social factors have been tested, sociolinguistic patterns generally replicate those found across the Spanish-speaking world, revealing the systematic character of varieties of Spanish in the U.S.

A contributing factor to the paucity of studies has been the familiar problem that social characteristics of speakers are generally less well defined than linguistic categories, particularly in minority language situations, and that social factors are often highly interdependent. A solution to this conundrum can be found by using a data optimization method such as PCA as a heuristic for grouping speakers strictly based on their linguistic behavior, with the groups thus defined then interpreted according to social characteristics. We have illustrated one such analysis in a corpus of New Mexican Spanish. By applying PCA to counts of known phonetic variables, we determined that occupation–education, gender, and demographic locale were likely social factors of variation. This was confirmed via regression analysis for two phonetic variables. For intervocalic /d/ and ⟨ll⟩, the highest lenition rates are found in speakers with production occupations and, for /d/, among men. In each case, we observe social stratification common not only to many other dialects of Spanish, but to many language varieties in general.

The study of Spanish in the U.S. can advance with data from community-based speech corpora that are constituted by participants of known sociodemographic characteristics sampled in an informed, principled way. These are, effectively, the principal components of accountable sociolinguistic research.
Notes

1. This work was made possible by funding from the National Science Foundation (Grant 1019112/1019122) to Rena Torres Cacoullos and Catherine Travis.

2. Poplack grouped coda /n/ and /r/ by morphemic status, separating verbal /n/ and infinitival /r/ from monomorphemic /n/ and /r/.

3. The PCA was conducted in R (R Core Team 2015) using the prcomp() function. The counts for each column were scaled to account for different overall token counts for the distinct variables.

4. We note that both approximant and elided intervocalic /d/ correlate positively with this component with similar magnitudes, which indicates that the component makes no distinction between the two. In fact, the variants of intervocalic /d/ pattern similarly for each principal component, indicating that /d/ elision is not a phonetic variable which contributes much meaningful variance for grouping our speakers.

5. Weighted effect coding was used due to inevitable token imbalances in discourse data.

6. Because Occupation has three levels, we compared production workers to other workers as one contrast, and service to professional occupations for the second contrast. Thus, weightings are reflective of how the second group behaves with respect to the first. In /d/ elision, for example, the negative estimate for Production vs. other indicates that speakers from non-production occupations elide less than speakers in production occupations.

References

Espinosa, A. M. (1911). The Spanish Language in New Mexico and Southern Colorado. Santa Fe, NM: Historical Society of New Mexico (No. 16).

