In this chapter, I consider how archaeologists have used visual representations to accompany discussions of landscape. In particular, I focus on recent “postprocessual” considerations of landscape and the forms of representation that have been used to illustrate both theoretical points and landscape case studies. I go on to consider how new virtual methods of representation offer a way forward for landscape studies.

Theoretically, landscape is now understood to be a key element of the experienced and engaged world. All human activity, past or present, takes place in the landscape; it is not simply a backdrop to life but is directly involved in how people undertake their everyday activities. Landscape plays an active role, structuring and structured by human agency. All landscapes are meaningful and dwelt in, and people assign meanings to the landscape. Landscape is therefore active, historical, and directly associated with a person and with a community’s identity (Ashmore and Knapp 1999; Bender 1993; Hirsch and O’Hanlon 1995).

These key theoretical points have been the background against which a number of landscape case studies have taken place. Scholars have been attempting to understand the potential significance of landscape in specific periods or involving particular types of evidence. One area that has seen considerable debate has been the setting of built architecture, in particular Neolithic monuments in Britain and Ireland. This includes Tilley’s original groundbreaking studies in *A Phenomenology of Landscape* (Tilley 1994), Bradley’s *The Significance of Monuments* (1998) and, more recently, a detailed consideration of the setting of chambered tombs throughout the Irish Sea region (Cummings Forthcoming; Cummings and Whittle 2004). The conclusions of this work are that Neolithic monuments are very carefully located in very specific parts of the landscape. They seem to be purposefully positioned in order to afford views of mountains, in particular visually distinctive mountains (Figure 28.1). Monuments are also positioned so that there are views of water, in particular the sea, lochs, and rivers, as well as other natural features such as rocky outcrops. It has been argued that these places were of key significance to the people who built and used these sites, probably associated with belief systems and ancestor or creation myths, as well as creating connections with a wider Neolithic community (Cummings Forthcoming; Cummings and Whittle 2004).

The Problems of Characterizing Landscape

One of the key problems facing landscape archaeologists, however, is how we represent these
Part IV: Living Landscapes: The Body and the Experience of Place

undertaking a landscape study involves visiting and experiencing archaeological sites and their associated landscapes firsthand. However, this firsthand experience cannot be easily replicated for others. There are other problems, too. First, all landscapes are experienced differently by different people. At the most simple level, attempting to characterize landscape is problematic: what one person considers to be an upland and remote landscape may not be the same for other people. At its most extreme, the example of the Umeda of Papua New Guinea may be cited (Gell 1995). These people live in the forest and struggle to perceive depth of field, especially distant landscapes. This raises the possibility that how we characterize landscape is culturally and contextually specific.

Second, there is a tendency to treat landscapes as visual phenomenon. This is almost certainly because landscape is for the most part a visual experience in today’s society. Although archaeologists have now begun to write about the significance of the other senses when engaging with landscape (e.g., Cummings 2002; MacGregor 2002; Mills 2005; Watson and Keating 1999), it is almost always the visual aspect of these landscapes that has been illustrated. One must remember that landscapes are multisensual and engage all the senses. How we characterize or represent a landscape and its engagements, however, is problematic.

The third problem facing landscape archaeologists is that landscapes change: many have changed radically since the periods we are studying, but landscapes also change over short periods of time—does not necessarily mean the landscape is not visible from a site (see Cummings and Whittle 2003), but it does mean that there would have been noticeable differences in the view and experience of place over time. With all these problems, how can we as archaeologists represent the lived-in, changing, temporal, and experienced landscape to a wider audience?

Archaeology, Landscape, and Representation

I consider the range of ways in which we can characterize or represent the landscape, discussing the full range of techniques currently available to us. The traditional way of representing landscape is through a map. Archaeological distribution maps did not commonly appear before the 20th century; prior to the pioneering culture-historical study of cultures across a wide area, there was neither the data nor the desire to show the distribution of material culture or structures. The growth of aerial photograph and the high resolution mapping by the Ordnance Survey of the British Isles in the early 20th century, however, enabled archaeologists to utilize this form of representation. Fox’s (1932) *The Personality of Britain* can be seen as an early example of the prominent use of the distribution map, and it remains one of the key ways of showing the landscape location of specific types of object.

It is fair to say that the experiential qualities of landscapes were not one of the primary interest areas of processualists, although certain landscape analysis techniques were employed,
Vita-Finzi (1972), thiessen polygon assessment (e.g., Renfrew 1973), and other forms of settlement pattern analysis (Hodder and Orton 1976). Postprocessual archaeology did not really begin to consider the significance of landscape until the early 1990s, and the favored method of representation in these early studies was the distribution map, in combination with photos and plans (e.g., Bender 1993; Tilley 1994). Although the extensive use of landscape photography was pioneering at the time, these “traditional methods” were rather inadequate at illustrating the range of experiences such landscapes can generate and have been critiqued by a number of authors (Fleming 1999; Thomas 1993). Furthermore, distribution maps are characterized by Cartesian notions of space, which is abstracted, timeless, and passive (Thomas 1996: 88), and the observer is removed from a lived-in world and ends up seeing literally everything from nowhere, what Haraway (1991: 189) describes as the “God-trick.” Therefore, with the sudden growth in the study of archaeological landscapes, particularly as part of a broader experiential archaeology (e.g., Rodaway 1994), and the critique of traditional forms of representation, new methods were sought. However, it is significant that the vast majority of landscape studies still use distribution maps, plans, and photos as their main way of representing landscape, almost certainly a reflection of the dominance of the published article/book.

One obvious alternative to the static photographic is video footage. This medium offers a dynamic method of showing the whole landscape and has the advantage of including sound, which can be the ambient background or a voiced narrative. There are problems with video, however: the image is as fixed in time as a photograph, and the viewer has no control over what is shown. With regard to accessibility, video can now be streamed over the internet, meaning that it is becoming an increasingly feasible means of viewing data, but storage can be a problem, because video is memory intensive. A few years ago, I considered some alternative methods (Cummings 2000b). One simple alternative, which has been in use for a number of years, is the 360° photographic montage. Quite simply, one takes a series of photos from a fixed point in the landscape and then uses a computer package to stitch the images together seamlessly. They can then be viewed on the internet (see Cummings 2000b for a series from the chambered tombs of South Uist). These panoramas are quicker to view than video, smaller to store, and enable advantage is that the photos can be labeled, so that particular landscape features can be highlighted, for example, www.english-heritage.org.uk/stonehengeinteractive/map/sites/stonehenge/swf.html). This technology (QuickTime Virtual Reality: QTVR) is now regularly used on commercial websites to provide a quasi-immersive visual experience. However, the vast majority of landscape archaeologists have not employed this technology, possibly because publishers still wish books or papers to “stand alone” and not rely on a website for some of the information.

QTVR may well have been derived from an earlier form of landscape representation that may have its origins in Alfred Wainwright’s landscape drawings of the Lake District (e.g. Wainwright 1960). Landscape panoramas appear in a number of publications (e.g., Bradley 1998; Cleal, Walker, and Montague 1995: 38–39). However, these strips are often unwieldy. It is also often difficult to make out the finer details of the landscapes they depict. A variation of these landscape strips has been published that compresses and stretches the landscape strip into a single image (Cummings 2000a: fig. 3). This method is also problematic, since it compresses the entire 360° panorama into a single diagram, and so one tends to think of this as a single view. One alternative method of representing the landscape has interesting parallels with the earliest antiquarian drawings of monumental landscape settings (Peterson 2003). These landscape representations are schematics that show the entire 360° in a single diagram; it has the key advantage of also showing directionality, and large numbers of panoramas can be easily compared for broader patterns (see Figure 28.2).

Another variation on traditional method is the photographic “montage.” Inspired by the work of David Hockney (1984) among others, these are an alternative way of illustrating a sense of place and also embed temporality into an image (see for example Shanks 1992: 123). Intimate details of particular places are also included, and this photographic style has recently been used successfully by others (e.g., Chadwick 2004; Edmonds and Seaborne 2001).

Following on from the artistic use of photographs in landscape archaeology is the use of artwork as a way of illustrating the experience of landscape. This is particularly interesting, because the term landscape was introduced into the English language as a technical term used by painters to refer to the genre of landscape painting (Hirsch 1995). Early paintings of archaeological sites frequently included their wider landscape setting,
Cook’s artist) painting of Easter Island (cf. Bahn 1996). More recently, art has again been used as part of the repertoire of landscape representation. In particular, the works of such artists as Richard Long and Antony Gormley have been cited as ways into representing experience, engagement, and landscape (see papers in Renfrew, Gosden, and DeMarrais 2004).

Geographic Information Systems (GIS) are increasingly being used as a key tool in landscape archaeology (Gillings, Mattingly, and van Dalen 1999; Johnson and North 1997; Wheatley, Earle and Poppy 2002; and see Conolly, this volume). One key tool in a GIS is “viewshed” analysis (Gillings 1998: 118), which shows which parts of the landscape are visible from a particular point of view (Figure 28.3). To support the observations made on the ground, I generated viewsheds for all the megaliths in Wales (Cummings and Whittle 2004: chs. 4–6; and see www.cf.ac.uk/hisar/people/vc/megaliths/megaliths.html). A more dynamic use of viewshed analysis was conducted at Stonehenge, which demonstrated which parts of the landscape were visible as one moves around the landscape (Exon et al. 2000). Although a useful tool in analyzing visibility, these viewsheds suffer all the problems of abstracted two-dimensional Cartesian views of the landscape and give no real sense of what particular views look like in reality (and see Cummings and Whittle 2004, ch. 3, for a further critique). GIS does enable archaeologists to assemble data from across a landscape, useful for the management or manipulation of existing data (Wheatley and Gillings 2002).

Conclusions

How we characterize landscape, represent it, then present our findings to a wider audience can be considered one of the most difficult problems facing landscape archaeologists. In this chapter, I have considered a suite of techniques that can be employed by archaeologists wishing both to illustrate their points and to enable the reader to get some sense of the landscapes in question. There are quite clearly advantages and disadvantages to all the methods that have been outlined here. There is no denying the longevity of the distribution map, and photographs are effective because of their effectiveness in communicating data in a relatively easy and inexpensive way. However, nontraditional ways of representing the landscape can also offer us new ways of experiencing and dwelling in the landscape. Technology offers us alternatives to traditional text-based narratives. At this particular time, it seems that web-based resources offer a way forward for landscape characterization and representation. They offer the potential to use all of the visual methods of representation that have been discussed in this chapter, which, when embedded within a GIS or similar interface, can also incorporate video or sound clips. It seems clear that the most effective way of illustrating our case studies is to use as many different representations of landscape as are available. This should enable the reader to gain a range of experiences that may lead to additional alternative interpretations.
Figure 28.3 GIS viewshed from the chambered tomb of Pentre Ifan. Parts of the landscape that are visible from the site are in black.

References

