33

PRAGMATIC COMPETENCE*

Filippo Domaneschi and Valentina Bambini

33.1 Pragmatics and cognition

33.1.1 The Gricean view

In the linguistic and philosophical tradition, pragmatics is typically considered as the study of the use of language in context. This conception is strictly related to the seminal work of the philosopher Paul Grice. In ‘Meaning’ Grice (1957) faces a crucial question: why does a sign mean something? Grice notes that the same linguistic expression ‘to mean’ can have two different uses. First, an expression like ‘These spots mean measles’ is an example of natural meaning, i.e., a sign has a natural meaning when it means something simply because things in the world are in a certain way. Conversely, the use of mean in a sentence like ‘Three rings on the bell mean that the pub is closing’ is an example of non-natural meaning: in this case, a sign means something only because a certain speaker has the intention to communicate something to an audience by using a particular sign.

Within the realm of the non-natural meaning, Grice distinguishes between the sentence meaning and the utterer’s meaning. Sentence meaning is the conventional meaning of an expression, which is given in terms of the timeless-language-meaning of an utterance-type: it is the linguistic meaning of structured and complete expressions pertaining to some type of sentence independently of a particular circumstance of use. Sentence meaning (or linguistic meaning) does not depend on the idiolect of a single individual; rather, it is the timeless meaning of a type-expression q socially determined within a community of speakers that share a language. According to Grice, the linguistic meaning of an expression q is simply a clue used by speakers to convey the utterer’s meaning (or speaker’s meaning), i.e., what a speaker S intends to communicate by uttering q in a specific verbal interaction.

The general conclusion of the Gricean analysis of the notion of meaning in terms of speakers’ intentions is that, most of the time, what a speaker means to communicate does not coincide with what she explicitly says. This idea results in the distinction between what is said and what is communicated that has become Grice’s best-known contribution. His notion of utterer’s meaning is considered as being divided between:
1. what a speaker S explicitly says by the use of an expression E;
2. what a speaker S implicitly communicates by the use of the expression E.

The Gricean analysis has led contemporary linguists and philosophers to a mainstream view of pragmatics as the study of the speaker’s meaning and of the inferential processes of reconstruction of communicative intentions.

33.1.2 Pragmatics: performance vs. competence

Pragmatics has long represented an area of philosophical investigation based on intuitions and on the observation of linguistic behaviour. During the mid-1980s, scholars in pragmatics embraced a more cognitively oriented perspective, which led to psychologically plausible models of communication (e.g., Relevance Theory) and to a closer look at the idea of a ‘pragmatic competence’.

Until then, Pragmatics had received little attention for two main reasons. First, in linguistics, the early version of the generative grammar framework posited a distinction between competence and performance (Chomsky 1957). In later works, Chomsky (1980: 225) introduced the notion of ‘pragmatic competence’ to recognize that language users possess a knowledge of how verbal language is related to the specific circumstance of use. The seminal distinction between competence and performance, however, initially led many to include pragmatic phenomena in the domain of performance, thus excluding pragmatics from linguistic investigations focused instead on the level of competence, pertaining mainly to syntax. Second, the modular Theory of Mind (Fodor 1983) initially rejected the idea that pragmatic processing was associated with a specific, independently analysable module as a classic Chomskyan-intended competence was expected to be. Since the use of language involves a number of factors (e.g., the calculation of implicatures, understanding of speech acts, the turn-taking system, etc.), pragmatics was not considered as ruled by a single module, rather as pertaining to the central cognitive systems.

In this theoretical environment, the approach known as Cognitive Pragmatics arose as a first attempt to legitimize pragmatic investigation within a modular-generative perspective. On the one hand, Asa Kasher (1994) – who first used the term ‘Cognitive Pragmatics’ – suggested a revision of the Fodorian notion of module in order to account for pragmatic processing within a modular framework. Kasher argued that the use of language is based on two different types of pragmatic competence: purely linguistic pragmatic competence, and non-linguistic pragmatic competence.

Purely linguistic pragmatic competence is ruled by a set of modules (with properties different from Fodor’s modules) that drive specific pragmatic phenomena, e.g., the basic types of speech acts (e.g., assertions, orders, questions), turn-taking, etc. Non-linguistic pragmatic competence, according to Kasher, is not modular but general, namely, linked to more general cognitive systems devoted to rule all the pragmatic phenomena and it is based also on non-verbal information, e.g., the understanding of indirect speech acts, metaphors, irony, the rules of politeness, etc.

On the other hand, scholars in Relevance Theory initially rejected the thesis of the existence of an autonomous module for pragmatic processing. According to Sperber and Wilson (1986/1995), linguistic interpretation is an inferential process ruled by a general cognitive principle of relevance, according to which ‘human cognition tends to be geared to the maximisation of relevance’ and on the basis of a communicative principle of relevance which establishes that ‘every act of overt communication conveys a presumption of its own optimal relevance’. Since, in understanding verbal language, users select the most relevant meanings on the basis of a variety
of both perceptual and linguistic inputs, relevance theorists argued that pragmatic interpretation is a process based on the central system of thought. Later, however, Sperber and Wilson (2002) revised their position on modularism. They now argue that there is a specific module devoted to pragmatic interpretation, which is characterized by its own principles and mechanisms, which is the product of the evolution of the human capacity for ‘mind reading’. Specifically, the mind-reading ability or Theory of Mind (ToM) is traditionally considered as the ability to attribute mental states to oneself and to other human beings and to use such attribution of mental states to derive predictions and to formulate explanations about oneself and others’ behaviour (Premack and Woodruff 1978). Importantly, although the thesis of the modularity of pragmatics was well accepted within the Relevance Theory framework, the idea that pragmatics is a ‘competence’, intended à la Chomsky as a body of implicit knowledge, was contended. Carston (1997), for instance, argues that pragmatics is rather a performer operating within the constraints of real-time, on-line language processing.

Another prominent model that was shaped throughout the 1990s is Bara’s Cognitive Pragmatics (Bara 2010), which interpreted theoretical pragmatics in a mentalistic key and emphasized the role of intentionality and cooperation in both linguistic and extra-linguistic communication. Cognitive pragmatics has offered a detailed characterization of communicative acts, which goes beyond the direct–indirect dichotomy and considers the length of the inferential chain required to derive the speaker’s communicative intention. On this basis, simple and complex acts can be distinguished, related to different cognitive loads.

In the current state of the art, the problem of determining whether pragmatic processing is driven either by a single module or by the central system is overtaken. Rather, the Gricean inspired idea that pragmatics essentially coincides with the ability to infer speakers’ communicative intentions has contributed to shape a widely shared assumption: as far as pragmatics can be intended as a competence, this should be largely tied, if not overlapped, with general mind-reading abilities, i.e., with ToM.

33.1.3 The experimental turn in pragmatics

In the last two decades, the cognitively oriented view of pragmatics paved the way to a further turn in pragmatic research, namely an ‘experimental turn’. The goal of Experimental Pragmatics is to investigate pragmatic phenomena via experimental methods (Noveck and Sperber 2004; Noveck 2018), and specifically to test the theoretical models proposed in the field, deriving psychologically sound hypotheses from them. Experimental Pragmatics is based mainly on the behavioural data and techniques from psycholinguistics and cognitive psychology. More recently, also clinically oriented research (‘clinical pragmatics’; Cummings 2017) and neuro–oriented research (‘neuropragmatics’; Bambini and Bara 2012) developed considerably. The main aim of clinical pragmatics is to describe the profile of pragmatic impairment in clinical population, whereas the main goal of neuropragmatics is to characterize the cerebral localization and neurochronometry of pragmatic processes using methodologies that include fMRI, MEG, and EEG. Admittedly, distinctions among these areas are often difficult to draw, and in this work we will consider evidence from all strands of empirical research in pragmatics and use Experimental Pragmatics as an umbrella term for all these approaches.

In Experimental Pragmatics, the use of complex paradigms, relying on both experimental settings and on neuropsychological tests, has become crucial for identifying whether specific cognitive functions correlate with the processing of specific pragmatic phenomena (e.g., implicatures, presuppositions, figurative language). This approach has massively investigated the
role of ToM but more and more interest has been devoted also to other cognitive functions such as executive functions, working memory, inhibitory capacity, etc. As a result, many studies allowed to shed new light on the relation between pragmatic processing and ToM (Cummings 2009), as well the complex interaction with other cognitive functions.

In what follows, we will try to argue that a careful survey of the most recent literature in Experimental Pragmatics can offer solid evidence in support of this thesis: pragmatic competence is not limited to the ability of understanding speaker’s intentions and, hence, pragmatic competence cannot be reduced to ToM ability. One element supporting this thesis is that pragmatic competence has specific, i.e., distinct from ToM, characterization in terms of developmental trajectories, patterns of decay, and neural substrates. Indeed, pragmatic processing is supported by ToM but also, sometimes more prominently, by a cluster of other cognitive functions, in ways that differ across types of population and of pragmatic tasks. Our position differs from that of those who interpret the complexity of the cognitive underpinnings of pragmatics as indicative of the epiphenomenal nature of pragmatics, where this is seen as the emergent result of the interaction between linguistic, cognitive, and sensorimotor processes (Perkins 2005).

33.2 Dimensions of variation in pragmatic competence

33.2.1 Presupposition (and some but not all about scalar implicatures)

According to Stalnaker (2002), presuppositions are the background information communicated as taken for granted. They are usually activated by linguistic expressions that are referred to as presupposition triggers. For example, the verb to give up triggers the presupposition of an antecedent state, while in the sentence ‘I regret that it’s raining’, regret triggers the presupposition ‘it’s raining’ (Levinson 1983). There are two possible outcomes of using a presupposing utterance: suppose that someone utters the sentence, ‘Sarah has given up smoking’. If it is already a common presupposition that Sarah used to smoke, then the presupposition is said to be satisfied. Conversely, an unknown or controversial presupposition leads to a failure. In this case, to make sense of the utterance, failure can be repaired via accommodation, i.e., the process whereby the presupposition that Sarah used to smoke is accepted (Lewis 1979).

Although presupposition has long represented a central topic of interest for theoretical investigation, experimental research on this topic is rather recent. The primary reason for the lack of experimental research is that, different from accounts of metaphor, of irony or of conversational implicatures, theoretical models of presupposition were mainly developed within a formal semantic framework. What the cognitive underpinnings of presupposition processing are remains unclear. The issue of which cognitive functions are involved in understanding information taken for granted is, in fact, still mostly open.

Recent studies, however, tried to investigate the relation between presupposition processing and cognitive functioning. Indeed, the evidence collected up to now suggests that presupposition represents an interesting case study for disentangling the role of working memory in supporting pragmatic competence. Domaneschi et al. (2014), for example, focused on the cognitive load of different presupposition triggers. In their experiment, a group of healthy young adults were presented with a series of stories containing different presupposition triggers. Afterwards, participants were required to answer a series of questions directly targeting the content of the presuppositions introduced in the stories. The task was performed in two conditions, one of high and one of low cognitive load, depending on the number of geometrical figures that participants were required to remember during the task. Results showed that, when
people are in a condition of high cognitive load, the accommodation of a presupposition is difficult with temporal triggers and, in particular, with change-of-state verbs such as *stop* and *start* and with iterative expressions such as *return* and *again*, which require a demanding process of mental representation of temporally displaced events. This result constitutes first evidence in support of the idea that the process of updating the discourse mental model with a presupposed information is modulated by the working memory ability. The higher cognitive cost associated with change-of-state verbs has found further experimental support in an Event Related Brain Potentials (ERP) study, where Domaneschi et al. (2018) showed that the accommodation of presuppositions activated by change-of-state verbs, as compared to that of definite descriptions, is more effortful in the later stage of processing, i.e., the one reflecting the updating of the discourse model with the presupposed information (associated with the so-called P600 component).

The idea that working memory is prominently involved in updating the discourse model with presupposed information was further investigated in Domaneschi and Di Paola (2019). In a word-by-word self-paced reading paradigm, presupposition processing was investigated by comparing a group of young adults with a group of healthy elderly participants, to ascertain the role of the aging factor. Results support two conclusions. First, older adults, as compared to younger adults, exhibit higher on-line processing costs for presuppositions with change-of-state verbs as compared to definite descriptions. Second, the ability to recover information introduced in the discourse as taken for granted is affected by the aging factor: elderly subjects took longer in recovering presupposed information from the discourse mental model than the younger control group. Interestingly, the authors observed a significant correlation between the participants’ working memory capacity and the ability to recall information previously introduced as presupposed.

These results offer initial evidence in support of the idea that for pragmatic phenomena such as presuppositions that do not typically convey the main point of an utterance, i.e., the speaker’s meaning, pragmatic processing relies primarily on non-mindreading mechanisms. Understanding a presupposing utterance seems to require the ability of retaining in the working memory a mental representation of the discourse mental model and of recovering from that model the presupposition introduced by a trigger, a cognitive skill that seems to be mastered more by working memory capacity than by ToM.

Converging findings were reported for another largely investigated pragmatic phenomenon, namely scalar implicature, e.g., the meaning ‘not all’ derived from the use of expressions on a scale such as ‘some’ and ‘any’. Using a dual task paradigm requiring both sentence verification and memorization of dot patterns, De Neys and Schaeken (2007) showed that participants derived less scalar implicatures under memory load. This is indicative of the non-automatic nature of scalar implicatures and of the involvement of executive resources. By contrasts, studies showed that autistic-like traits (considered as a proxy of ToM skills) are not crucial in the comprehension of scalars (Heyman and Schaeken 2015, Antoniou et al. 2016).

33.2.2 Conversational mechanisms

The variety of cognitive functions that contribute to determine language users’ pragmatic competence emerges clearly with two pragmatic phenomena that play a key role in the organization of a conversational exchange: the turn-taking mechanism and politeness.

Turn-taking is the set of rules and mechanisms that coordinate the activity of speaking and listening in a conversation such that at any time of the talk exchange there is only one speaker (Sacks et al. 1978). Turn-taking mechanisms are usually considered universal (Stivers et al. 2009)
and are displayed by both sign and verbal language with little quantitative and qualitative variation between them (Holler et al. 2015). There is compelling evidence that turn-taking skills are largely affected by executive functions and by joint attention.

The literature on typical development shows that turn-taking is among the first pragmatic mechanisms acquired by children: neonates take part actively in verbal interactions with smiles and sounds and coordinate their rhythm with that of the adults, showing distress in case of perturbation in the turns alternation (Murray 1998; Trevarthen et al. 1999). Turn-taking skills are significantly related to infants’ joint attention capacity, which typically emerges at six months. Such a capacity slowly increases in the early development, resulting in an initial difficulty in planning an adequate response to an antecedent turn: Casillas et al. (2016), for instance, showed that young children answer questions with longer delays than adults due to the effort associated with planning and elaborating an appropriate answer.

Research on atypical development suggests that children with Pragmatic Language Impairment exhibit difficulties in providing clues for turn-taking (Bishop et al. 1994) and are more likely to share less information with the interlocutors, indicating a lack of joint attention (Murphy et al. 2014). Similar difficulties were documented also in children with Autism Spectrum Disorder (ASD). Although children with High Functioning Autism do participate in conversation and try to follow the turns alternation, they were shown to be less likely to answer questions (Eales 1993) and more likely to ignore adults’ invites to converse than language-matched groups of typically developing children (Eigsti et al. 2007).

In the area of atypical development, the most informative case study in this respect is represented by subjects displaying Attention Deficit Hyperactivity Disorder (ADHD). Executive dysfunction, which is the main explanatory model for the symptoms of ADHD (Willcutt et al. 2005), is usually identified as the main reason behind the pragmatic problems in ADHD. The difficulty of ADHD children in sustaining attention, for example, was associated with difficulties in turn-taking/waiting (Staikova et al. 2013; Green et al. 2014).

Converging evidence comes from studies on adult clinical populations. Executive dysfunction has been associated with deficits in turn-taking both in subjects with brain tumour (Wolfe et al. 2013), non-Alzheimer dementia (Rousseaux et al. 2010), and Parkinson’s disease (McNamara and Durso 2003).

Another promising line of research on the cognitive underpinnings of pragmatic processing revolves around politeness mechanisms. The rules of politeness and, in particular, the notion of positive and negative face have been argued to be universal components of human culture (Brown and Levinson 1987). Yet, developmental research has provided blatant evidence in support of the idea that the specific politeness rules of a linguistic community are culturally dependent and are acquired rather late as the result of explicit instruction provided by the parents (or other adults) to the children (Foster 1990). More specifically, the ability of formulating indirect requests as an instrument of politeness, which is typically taught between the ages of two to four years (Aksu-Koç and Slobin 1985), increases progressively in typically developing children. Empirical evidence collected seems to support the idea that the ability to use politeness rules as a function of the acquisition of social skills goes hand in hand with the development of ToM abilities. Another example in this respect are white lies used for politeness purposes – i.e., lies produced in situations where insincerity is considered socially appropriate. White lies display, in fact, a developmental trajectory which is symmetric with that of mind-reading abilities: children are typically not able to use white lies competently before the age of four (Broomfield et al. 2002; Airenti and Angeleri 2011) and this competence increases gradually together with their ToM abilities until the age of 11 (Ma et al. 2011). If a prominent correlation between politeness roles and mind-reading skills seems to characterize early pragmatic
development, the picture is less clear and more fragmented with clinical subjects at a late stage of lifespan. First, in some patients with dementia, politeness skills, as well as other social skills, are partially preserved (Davis and Maclagan 2010), second, the correlation between deficits in socio-pragmatic skills and defective mind-reading abilities is not so clear especially in patients with Alzheimer’s Dementia (Guendouzi and Savage 2017). Moreover, research suggests that politeness skills indeed may be compromised in subjects with Parkinson’s Disease (Holtgraves and McNamara 2010) but no direct correlation between such a deficit and difficulties in ToM has been observed yet and, more importantly, as explained before, pragmatic deficits in this population seem to be linked more with a general disruption in executive functioning than with a compromised ToM (Kudlicka et al. 2011).

33.2.3 Metaphor

According to Grice’s proposal (Grice 1975), metaphor represents a case of blatant violation of the Quality Maxim, leading to a conversational implicature. In Relevance Theory, the emphasis is on conceptual operations that lead the hearer to derive the speaker’s meaning in a metaphor. Upon hearing “Sally is an angel”, the hearer will adapt the concept ANGEL by narrowing its denotation (e.g., dropping logical properties such as being a supernatural creature) and broadening it to include people that share encyclopaedic properties of angels, such as being kind and gentle (Wilson and Carston 2007). These models, however, did not make explicit predictions in terms of time-course and processing. These aspects were discussed in psycholinguistic research, which hosted a long-lasting debate between Grice-inspired indirect access accounts and direct access models of figurative meanings (Gibbs 1990). As often happens, data support an in-between position. All other things being equal, the processing of a metaphor leads to increased costs with respect to its literal equivalent (Noveck et al. 2001; Bambini et al. 2013). However, context plays a crucial role and may reduce the costs of metaphors, together with other properties such as familiarity and salience (Giora 2003). Further evidence on processing came from the use of the ERP technique, which can track neural activity underlying metaphor comprehension with millisecond precision. Based on ERP evidence, metaphor comprehension seems to go through an early phase of lexical effort, indexed in the so-called N400 component, which is sensitive to context-based expectations; later, metaphor understanding elicits the so-called P600 component, reflecting inferential operations that lead to the communicated meaning (Weiland et al. 2014; Bambini et al. 2016).

The processing costs described above make metaphor a challenge in acquisition. Although the type of task can make the difference (Poucoulous 2014), there is evidence that children do not fully master metaphor until the age of ten years (Winner et al. 1976). Moreover, metaphor is a challenge in atypical development, especially in children with ASD (Kalandadze et al. 2019). A seminal paper testing children with ASD claimed that metaphor comprehension requires first-order ToM, since it involves the interpretation of the speaker’s thought (Happé 1993). The modern view, however, has toned down the claim about the role of ToM and evidenced the role of other factors, especially language and vocabulary skills (Norbury 2005). Interestingly, the relationship between metaphor and ToM might depend on the type of metaphors, being stronger for metaphors expressing psychological characteristics (e.g., Daddy is a volcano) rather than for metaphors expressing physical characteristics (e.g., Dancers are butterflies; Lecce et al. 2019).

Metaphors represent a hard challenge also for several adult clinical populations (Thoma and Daum 2006). Among them, the most relevant condition associated with problems in metaphor comprehension is schizophrenia, where literal interpretation of metaphor has been known since the early description of the illness and is referred to as ‘concretism’ (Kircher et al. 2007; Mossaheb
et al. 2014). The literature has largely explored the neurocognitive underpinning of metaphor impairment in schizophrenia, reporting the involvement of a large range of cognitive skills, including ToM but not limited to it, and extending also to executive functions, intelligence, and symptoms (Champagne-Lavau and Stip 2010; Mossaheb et al. 2014). Likewise, neuroimaging studies on healthy populations reported the involvement of several brain regions devoted to different cognitive functions, from ToM to executive processing linked to the suppression of irrelevant information (Bambini et al. 2011). Overall, it seems impossible to link metaphor comprehension to a single cognitive component. Rather, a more fruitful approach is to see metaphor as a pragmatic task having its own patterns of processing, development, and decay, and involving other cognitive skills depending on the individual and stimulus characteristics.

33.2.4 Irony

In the previous sections, we have highlighted a number of pragmatic tasks where ToM proved not to be sufficient for a correct pragmatic behaviour. We shall end with a task where, indeed, the role of ToM seems more pervasive, namely irony. In the Gricean framework, irony was linked – just like metaphor – to a violation of the Quality maxim. Yet this account does not fully consider the complexity of irony, which is eminently a meta-cognitive phenomenon, related to the expression of attitudes. This aspect is captured by the echoic theory of irony proposed by Relevance Theory, where ironic utterances are seen as echoing a thought and conveying a derogatory or mocking attitude toward it (Wilson 2006).

In this framework, the link between irony and ToM becomes radical. Several studies investigated the developmental steps leading to full-fledged ironic abilities (Filippova and Astington 2008; Glenwright and Pexman 2010) and highlighted a relationship with ToM development, especially second-order ToM (Nilsen et al. 2011). Consistently, neuroimaging studies showed a large degree of overlap between the brain regions recruited by irony processes and the neural correlates of classic ToM tasks such as false beliefs (Spotorno et al. 2012). In the same vein, irony and social-cognition impairments are connected in atypical populations such as those with ASD (Happé 1993) and schizophrenia (Langdon et al. 2002).

It would be simplistic, however, to assume that irony can be collapsed into ToM. Bosco and colleagues have developed a research line targeting sincere, ironic, and deceitful communication in development and in clinical conditions, and consistently reported cases where ToM alone is not sufficient to explain behaviour in non-literal communication (Bosco and Gabbatore 2017; Bosco et al. 2018). There is clearly more involved than ToM alone in determining the ability to understand ironic meanings. For instance, it has been argued that an important predictor of the ability of individuals with traumatic brain injury to understand irony is general inferential reasoning (Martin and McDonald 2005), and executive functions too have been shown to play a role (Bosco et al. 2017).

33.3 Conclusion

Throughout this chapter, we tried to highlight a considerable body of research in theoretical and empirical pragmatics that offers compelling evidence in favour of an internal characterization of pragmatics, thus in favour of the idea of pragmatic competence. In our view, this amount of evidence indicates that pragmatic behaviour is not haphazard: speakers are equipped with a specific capability of activating certain procedures in communication, and such capability – or competence – can be described in terms of specific neurophysiological
Pragmatic competence correlates, developmental trajectory, and patterns of decay. Yet pragmatic competence – just like any other cognitive aspect – is to some extent intertwined with other cognitive domains. The Grice-inspired idea, further elaborated in Relevance Theory, that pragmatics (and pragmatic competence) is a sub-module of ToM certainly captures a crucial aspect of pragmatics, i.e., the intentional nature of meaning. However, when interpreted in terms of an overlap between pragmatics and ToM, this view does not fully account for the available data, where the involvement of ToM in pragmatic tasks is fragmentary and unsystematic across the literature. In line with recent proposals in the field (Bosco et al. 2018), we argue that pragmatics and ToM do not overlap. A more likely scenario is that pragmatic competence is a specific capability, which in turn might exploit an array of other cognitive abilities, differently engaged depending on the specific communicative situation and properties of the interaction (Andrés-Roqueta and Katsos 2017). There might also be differences linked to the specific task: for instance, tasks such as metaphor and scalars might be linked to vocabulary knowledge and only minimally to ToM, while other tasks, such as irony, might greatly capitalize on mind-reading skills. Similarly, presuppositions seem to depend more on speakers’ executive functioning and, in particular, verbal working memory skills. Differences might also be due to the specific cognitive profile of each population, where impairment in – for instance – executive functions or language skills might hamper pragmatic processing (Martin and McDonald 2003). Finally, it is worth noticing that ToM per se encompasses different aspects and does not constitute a single ability. ToM can be distinguished, for instance, in first- and second-person ToM, cognitive and affective ToM, first-, second- and third-order ToM: all these aspects might be differently engaged in pragmatic processing. The complexity of this scenario should be taken as indicative of a lively time in Experimental Pragmatics, ready for taking the challenge – after two decades dominated by discussion on the competence-performance dichotomy and on the role of ToM – of shaping a new and more mature account of pragmatic competence.

Note

* Author contribution: Although the two authors planned and revised the chapter jointly, FD is responsible for sections 33.1, 33.2.1 and 33.2.2, while VB is responsible for sections 33.2.3, 33.2.4 and 33.3.

References

Pragmatic competence

