21
THE TARGETS OF SKILL, AND THEIR IMPORTANCE

Joshua Shepherd

21.1 Introduction

Skill essentially involves an agent’s being excellent in some way. The skilled agent is skilled – possesses an excellence, exercises an excellence – at something. What is the thing at which agents become skilled? Call this something the target of skill. 1

Normal talk is permissive about the nature and boundaries of skill’s targets. Agents display skill at actions, at games, and at a wide range of practices and activities. Such talk suggests pluralism about the targets of skill. But understanding what we are committing to when (or if) we commit to pluralism here requires more attention to the targets of skill, for philosophers have said very little about this topic.

In this chapter I hope to illustrate the importance of clarity regarding the targets of skill. Among other things, attention to the targets of skill suggests that skills display variable structure, depending upon the target. In addition, attention to the targets of skill suggests that antecedent commitment to some account of some target provides motivation for certain specific accounts of skill.

Here is the plan. In Section 21.2, I discuss action as a target for skill. In Sections 21.3 through 21.5, I discuss games as a target for skill. In Section 21.6, I suggest that the most general target for skill is what I call an action-domain, and I offer some reflection regarding the nature of action-domains.

21.2 Skill at action

Philosophers often talk as though action is the primary target of skill. We read of skill at A-ing, where A is an action-type. This makes decent sense. One can be skilled at baking, throwing, or telling a joke. Baking, throwing, and telling a joke are all types of (intentional) actions.

What is an action? That’s a pretty spicy one. There are lots of views. All of them, I wager, have some commitment to the general view that action is a kind of success. To have acted is to have done something that rises above the level of abject failure. So action, like skill, displays a kind of excellence.
Beyond this, disagreement is rife. For the purposes of an account of skill, does it matter which view is right? Let’s see.

Consider a view – really a family of views – that makes knowledge necessary in some way for (intentional) action (Anscombe 2000; Gibbons 2001; Pavese 2018). There are different ways of fleshing the idea out. Gibbons states one of them when he asserts that ‘the role of knowledge in the explanation and production of intentional action is as indispensable as the roles of belief and desire’ (Gibbons 2001: 580).

On such a view, an agent’s behavior does not qualify as an action unless that agent has a certain kind of knowledge of what she is doing, as she does it. (There could be different accounts of the kind of knowledge the agent needs.) If action is knowledge-involving in this way, one might think it plausible that an account of skill should give a central role to knowledge, perhaps explaining features of skill in terms of features of knowledge. The idea would be that what makes action excellent qua action – in this case, knowledge – might help explain what makes skilled action excellent qua skilled.

Two recent philosophical accounts of skill do appeal to knowledge, each in different ways. Carlotta Pavese (2016a, 2016b) proposes that an agent is skilled at A-ing if and only if that agent knows how to A sufficiently well. There are two components to this kind of account. The first involves a particular view of knowledge how. It is distinctive of Pavese’s approach that knowledge how is a kind of propositional knowledge – ‘S’s knowing how to phi is a matter of S’s knowing, for some way w to phi, that w is a way he himself could phi’ (Pavese 2016a: 650). For Pavese, then, skill at action is explained in part by the kind of propositional knowledge agents possess regarding ways to act.

The second component arises in the transition from non-skilled to skilled action. The skilled agent not only knows how to A, she knows how to A well. What’s that? It turns out that knowing how to A sufficiently well is a difficult notion to explicate. Pavese has made good progress here, however, in a recent paper that explores different ways knowledge how may come in degrees (Pavese 2017). Examining her proposals is beyond the present scope. But I offer an example that gives some of the flavor. Consider Pavese’s discussion of degrees of qualitative knowledge how – a kind of knowledge how that involves knowing qualitatively better answers to questions regarding how to A.

Suppose Carla and Ale both know several practical answers to the question How to make ravioli but one of the answers known by Carla is better than any of those known by Ale. One way that answer may be better is by being more detailed and precise; or it may be better by being about a better way of making ravioli (a better recipe); a further way her practical answer may be better is by practically presenting a recipe for making ravioli in a better way than any of Ale’s answers … a practical sense may be better by being more efficient or simpler, just as certain computer programs can be more efficient than others; or it may be better by being more reliable, just like programs can be more or less likely than others to enable the successful execution of the task.

Stanley and Williamson appeal to knowledge, but in a very different way than Pavese. They argue that skill is ‘a kind of disposition to know’ – in other words, ‘to be skilled at the action type of Φ-ing is to be disposed to form knowledge appropriate for guiding tokens of Φ-ing’ (Stanley & Williamson 2017: 715). This appeal to dispositions and knowledge that guides sets up a distinction between manifestations of skill. For Stanley and Williamson, skill’s direct manifestation is knowledge appropriate for guidance. The indirect manifestation of a skill is the action...
guided by acquired knowledge states: ‘any skilled action is guided by knowledge that manifests [in the direct sense] possession of skill at that activity’ (Stanley & Williamson 2017: 718).

One awkwardness for this kind of account is that agents could be disposed to acquire guidance-apt knowledge despite qualifying as skilled at an action. Stanley and Williamson might respond that such a case represents a failure to indirectly manifest skill – the essence of skill is the acquisition of the knowledge. Even so, such an account requires an account of skill’s gradability. Stanley and Williamson offer some thoughts on this matter, in one place endorsing Pavese’s account of knowledge how’s gradability. So it may be that both accounts come closer together when attempting to explain the range of excellence that different skills display.

It is not my aim to assess either of these accounts in this chapter. Just here I wish to trace the connection between an account of action as requiring knowledge, and an account of skill as doing the same. If one favors the knowledge-involving account of action, one might see motivation for a knowledge-involving account of skill. After all, if action does not require knowledge, one might expect to find at least some instances of excellently performed action that also do without knowledge. That would be awkward for a knowledge-involving account of skill.

But now consider causalist views that understand the nature of action not in terms of knowledge, but in terms of relationships of (non-deviant) causation between mental states like intentions (or events of intention acquisition and persistence) and behavior (Goldman 1970; Brand 1984; Mele & Moser 1994; Shepherd forthcoming). On these views, much of the explanatory work is done by those capacities, dispositions, or whatever, that explain how intentions manage to non-deviantly cause behavior.

An account of skill at actions construed in this causalist way might make no reference to knowledge. Consider the following kind of view, which I float in my (forthcoming). I suggest that in order to possess skill regarding some action A, the agent needs only (a) a set P of success-conducive plans for behavior, (b) high levels of control regarding the behaviors in the plans such that attempts to execute (most) members in P reliably leads to successful A-ing, where the successes occur in virtue of control the agent exercises (that is, occur non-deviantly).

Such an account has obvious work to do. The notion of non-deviant causation may be thought problematic (see, e.g., Williamson 2017). Note, though, that I offer a novel account of non-deviant causation in Shepherd (forthcoming). Or, given the recent acceleration of work on control (Fridland 2014; Shepherd 2014; Wu 2016; Buehler 2019), one could find fault with the notion of control in operation here. But even if the notion of control can be satisfyingly specified, there is work to do in specifying how an account without knowledge can properly explain the successes. But if such work can be done, proponents of action that do without knowledge may prefer the account.

A still different view of action does not explain action in terms of any other notion. Action-first views take action as primitive, and use action to explain other features of agency (Levy 2013; O’Brien 2017). This is a research program that, as Levy explains, ‘reverses the explanatory order of the standard reductionist programme by casting intentional action in the role of explanans rather than explanandum’ (Levy 2013: 712).

How might such an account explain skilled action? One option would be to take skilled action as primitive, and think of non-skilled action as somehow derivative. It is not clear how such an account would go. In any case a view that takes action as primitive will likely need additional resources to explain what separates the skilled from the unskilled actions. Each theorist can chart for herself the best available routes. But it looks like the action-first theorist has options.

She might explain skilled action in terms of higher degrees of control over action and better quality of plans for action – retaining the commitment, of course, to action as primitive. Or she
could follow a knowledge-involving account, maintaining that action plus knowledge, suitably mixed, yields a satisfying account of skilled action. Or, following the action-first manifesto, she could try to use the notion of action itself to explain skill. How that might go remains to be seen.

It emerges, then, that distinct views on the nature of action provide motivation, at the very least, for distinct views of skill at action. Might the same be true of other targets of skill? Perhaps that question is too quick. A prior question: is action the only target of skill?

21.3 Moving beyond action

Consider developing skill at a simple computer game, such as the game Infinite Stairs. This game is straightforward. Using a customizable avatar, one is supposed to climb an ascending set of stairs. There are only two buttons, each on the bottom of one’s tablet screen. One button moves the avatar up the stairs to the right. One button moves the avatar up the stairs to the left. So one furiously taps the screen in accordance with the moves the ascending staircase requires.

There are a finite series of stair combinations that can appear. So one can master, relatively quickly, the relevant combinations – left/right/right/left, or right/left/right/left, etc. One other relevant parameter involves the speed with which one can repetitively hit a single button. And, reporting from practice, a final parameter involves attention. Some of the avatars are shaped differently, and some move in annoying ways. So it is sometimes necessary to direct attention away from distractors and only to the upcoming stair combinations.

Pretty quickly, one acquires skill at Infinite Stairs. But Infinite Stairs is not an action-type. Infinite Stairs is a game. The game has a certain structure. And this structure calls forth more than one kind of behavior, and more than one kind of action from the skilled agent. One needs to master capacities to recognize stair sequences. One needs to master capacities to direct attention within the limited space of the screen. One needs to master capacities to sequence button combinations, at various speeds.

This example, and many more besides, suggest that agents become skilled not just at actions, but at clusters of actions (and other behaviors). One way actions cluster together is via games. Indeed, some of the clearest and cleanest examples of skill we have involve gameplay. These examples drive the psychology of skill and inform philosophical reflection. Agents spend large parts of their lives practicing at games. So it seems games are legitimate targets of skill.

21.4 Games

What is a game?

Chess is a game, Stratego is a game, Freezetag is a game, rugby is a game, baseball is a game, netball is a game, Capture the Flag is a game. It is not difficult to point to examples. But what holds these together? This is a notoriously difficult question to answer, and some – e.g., Wittgenstein (1953) – have suggested that attempting to define ‘game’ is a mistake.

Bernard Suits’ (2014) influential suggestion was that a game involves taking up unnecessary obstacles for the sake of the behaviors – actions, activities – doing so makes possible. It is an interesting view, though few have followed Suits in the specifics.

A leading tradition in the philosophy of sports makes central appeal to rules. In a review paper, Nguyen describes formalism as the view that ‘the essential nature of a game is its rule-set’ (Nguyen 2017: 9). This is coupled with a view that ‘proper play involves obeying the rules’ (Nguyen 2017: 9).
It is difficult to deny that games involve rules in some way. Perhaps they do so essentially. But even if rules are essential to the nature of games, it is difficult to accept that this is all there is to it. Many have pointed out problems. To name just one, noticed by Williamson, ‘in the ordinary sense of “game”, games such as tennis gradually change their rules over time without losing their identity’ (Williamson 1996: 490).

It would take us far afield to consider in detail the best available accounts of games. One suggestion, however, is fruitful for our purposes. Some have suggested that in addition to rules, games are governed by an ethos (Morgan 2004; Russell 2004; Simon 2000). Russell argues that ‘games create opportunities for developing certain human excellences by presenting obstacles that must be mastered and overcome in order to achieve the goal set by the game’ (Russell 2004: 146). He further proposes a principle according to which ‘[t]he practice of any game should be undertaken in such a manner that the excellences embodied in achieving the elusory goal of the game are not undermined but are maintained and fostered’ (Russell 2004: 146).

One can find much of value in the notion of an ethos even of one thinks of the ethos as deriving not from duties or anything committing one to normative realism, but rather as deriving from agreements or tacit contracts players enter into in specific contexts (Ciomaga 2013). Nor need one commit to the idea that it is excellences that the ethos makes central. It could very well be goals, or specific actions, or other zones of value, depending on the case.

Some games are fantastic because they are so silly. They seek to promote, not excellences so much as humorous moments, awkward situations, or whatever. This seems to be the case with many party games. (No one likes the guy who plays a game to win when winning is beside the point.) It might be the case with Calvinball – a game played by the two star characters, Calvin and Hobbes, in Bill Watterson’s comic of the same name. In Calvinball the players change the rules constantly. One rule is excepted from constant change – all players must wear masks. Beyond this, there does appear to be a structure, provided by two meta-rules. First, one can never play the same way twice. Second, one must accept the introduction of new rules. (It does not appear that one must always announce the introduction of new rules. Sometimes previously existing rules are only revealed when a new rule comes to bear on their zone of influence.) Is it possible to be skilled at Calvinball? It seems so. Calvin and Hobbes seem very adept. But it is unclear what one means in saying this unless one is appealing to something like an ethos – something like a commitment to absurdity and fun-promotion in rule-changes coupled with a deference to following existing rules.

I think we can be pluralists about the ethos of games while agreeing with Russell that the structure of games involves rules as well as a background normative notion.

To say this is to stop far short of an account of the nature of games. But we have enough to consider whether consideration of games as a target for skill generates any interesting thoughts about skill.

21.5 Skill at games

One thing that is interesting about games as targets of skill is that their structure seems to transmit a structure to the skill one develops. There is a relationship between target and the capacities that (at least partially) constitute skill. One’s skill at some game is not just skill at an action-type, but rather skill at a cluster of behaviors and actions.

Now games display a wide range of differences in complexity. Some games are simple. Infinite Stairs is an example. Some are not. At more complex games, the skill agents develop takes on a more complicated structure. The rugby player needs to be good at relatively technical
aspects of the game, depending on her position. She needs to know how to enter into a tackle safely, and how to tackle safely. She needs to become comfortable with the rugby ball and its odd patterns of movement, and the ways one might throw, kick, and catch it. She might need to learn special techniques – what some call the dark arts – for surviving the scrum. She probably needs to acquire a series of expectations and finely honed predictions regarding the intentions of her teammates and her opponents – how they are likely to move given the circumstance, what they are trying to do, what broad patterns of coordinated movement are evolving, and how she might tweak this evolution in advantageous ways.

Given their sometimes complicated structure, the development of high levels of skill at some games can take years even for very advanced players. (In part this is because one plays the game against highly intelligent opponents who anticipate one’s moves and plan counters.) Consider the basketball writer Zach Lowe’s analysis of the growth displayed by a young professional player (Jaylen Brown). In the following passage Lowe is discussing how Brown has begun to display a special kind of shot – a floater – useful in the rare circumstance that one is on the run at a certain specific place on the court, and to integrate this shot into the broader ability to generate offense for his team.

Brown is trying the right stuff, and you see some nascent feel – the instinct to change pace, keep his defender on his hip, Chris Paul-style, and manipulate the defense. That floater is a handy break-in-case-of-emergency weapon. Most players don’t develop a bunch of high-level offensive skills at once. They build brick-by-brick, using one skill to enable another. Once you can shoot 3s, you can drive around defenders who run you off the arc. The leap from there to functional pick-and-roll work might be the hardest for wing players. It can take years. Some guys never make it. Brown entering the early stages already is a huge win for Boston.

Lowe 2018

Lowe’s analysis makes an interesting point about skills in general, namely, that they often display a kind of compositionality and structure, and that fine-graining this structure allows one to think fruitfully about differences in levels of skill. Most basketball analysts would, of course, say that Jaylen Brown is already skilled at basketball. He is a professional player, after all. Lowe’s point is that developing high-level skills of the sort the best players possess – involving a kind of flexibility of ways to achieve common goals such as scoring or finding one’s teammates an open shot against world-class defenses – often takes several years of play at the professional level. This is because one must not only develop a range of abilities and master a range of actions. One must develop abilities to deploy these abilities and actions flexibly and appropriately across a range of challenging circumstance-types.

The more complicated structure displayed by skill at some games raises issues for a general account of skill.

Suppose that one begins with a success-based account of skill at action. All that one needs to be skilled is to have high levels of control regarding high-quality plans. One might worry that this does not cleanly transfer to skill at complex games. What’s left out? It looks like such a view has to take for granted the skilled agent’s capacity to routinely, reliably slot the right plans in at the right moment. That is, the constitution of skill at sophisticated games may require the fine-tuning of capacities to form, revise, and deploy plans for action.

There are different ways one may flesh this out. A natural suggestion is that we turn here to the agent’s knowledge base. So, for example, Stanley and Krakauer construe the kind of learning that supports flexible plan formation in terms of knowledge.
Typically, the process of becoming more skilled involves learning about multiple actions involved in success at the activity, in addition to their initiation conditions. The same kind of knowledge that is used to initiate an activity can also be injected at anytime in the ongoing course of that activity. For example, a tennis player changes her mind and switches from a groundstroke to a drop shot based on the position of the opponent. Such cases of learning are also knowledge.

Stanley & Krakauer 2013: 5

But there are other options. In forthcoming work Ellen Fridland points to the ways that practice not only develops an agent’s practical representations – her intentions and motor schemata – but also adds organizational structures that connect practical representations with perceptual representations in ways that assist on-line planning and enhance strategic control (see Fridland (forthcoming) for development of this notion).

John Bengson (2017) emphasizes the close relationship between understanding – here conceived as a cognitive, epistemically evaluable state distinct from knowledge – and skill. For Bengson, skillful activity is a paradigmatic manifestation of practical understanding. And practical understanding is a standing cognitive state characterized by a number of interesting features. Among others, practical understanding is: objective, in that it ‘involves genuinely grasping some portion of reality’ (Bengson 2017: 19); intelligent, as opposed to mindless reflex; coherent, in that it does not display inconsistency. Bengson argues that the kind of state that qualifies as understanding is a noetic conception: a conception of the activity in question the content of which is (at least) (a) correct regarding the activity’s features, (b) complete in adequately characterizing the activity’s central features, (c) internally coalescent in identifying pertinent substantive connections between the activity’s central features, (d) externally coalescent in being rationally consistent with alternative conceptions of the activity, and (e) content over which the agent displays mastery. Such a conception, Bengson asserts, is guiding for the agent: ‘an individual who has practical understanding will be in a state that is action-guiding, poised to underlie and explain the intentional execution of intelligent action’ (Bengson 2017: 43).

Bengson’s account of practical understanding is, obviously, subtle. I am not here aiming to assess it. But it is a candidate for explaining the subtle structure skill at games comes to take.

It is worth noting that incorporating a central role for understanding or skill at some games need not undermine a central role for control. Consider the following kind of case, which I discuss in Shepherd (forthcoming). It involves two agents, J and K. Assume that both know the same propositions regarding how to play some game. And assume that both have the same grasp – the same understanding – regarding how to play the game. It might still arguably be the case that J is more skilled than K. How? J may display higher levels of control at executing the actions favored by her knowledge or understanding. So J’s actions may more frequently meet with higher levels of success.

It is, of course, possible to construe J’s control over her action partially in terms of additional knowledge how, or perhaps in terms of qualitatively better. Perhaps J knows when and where to execute her actions. But it is an open question whether a knowledge-involving or an understanding-involving account can get by without incorporating a notion like control.3

So it looks like consideration of a more complex target for skill motivates an account that weds elements that are easier to keep separate when the target of skill is relatively unsophisticated. We may neglect the role of understanding when focusing on skill at simple actions. Or we may be happy with an account of a primitive notion of action, plus the addition of knowledge,
without needing any explicit mention of control. Such moves are less plausible when the target of skill is more sophisticated. Perhaps skill at basketball requires control, knowledge, and understanding, in a way that skill at kicking (or some other simple action-type) does not.

Once we allow that actions and games are both legitimate targets of skill, a question arises about further targets. It seems unlikely that games are the most general target of skill. In the next section I consider some examples.

21.6 Action-domains

Agents develop skill at targets not best thought of as games.

Consider, as targets of skill, various practices: weaving, knitting, painting, driving. All of these go beyond skill at action, since these practices consist at least partially of structured clusters of behaviors and actions. And none of these are easily construed as games.

Consider, as targets of skill, various professions: law, medicine, philosophy. It does seem that some people develop skill at these professions. And all of these go well beyond what is easily captured in terms of action-types or games.

I propose that the most general target of skill is an action-domain. As I employ it, action-domain is a technical term. It is, however, familiar from normal talk about skills. It is possible to think of Infinite Stairs, rugby, neurosurgery, philosophy, and knitting as kinds of action-domain. The same is true of action-types, although this is somewhat artificial. But one can restrict one’s action-domain to the case of a single action – juggling, baking, knitting, kicking, whatever.

What is an action-domain? I develop an account in Shepherd (forthcoming). I am not sure it is the best possible account. Indeed, given that very few have theorized regarding the targets of skill, it is unlikely that I have hit upon the best account. But I offer it here as a way forward.

The chief constituent of an action-domain is an ideal of success. Sometimes the ideal can be cashed out in terms of a goal. If the domain in question is a sport, the chief goal might be to win games, or championships. If the domain in question revolves around some social good, the chief goal might be to further the more abstractly characterized ideal. The defense lawyer, for example, has a goal of defending her clients. But the broader aim may be to further an ideal of justice.

The ideal of success can be more or less complex. There may be more than one way to succeed. The ideal of stand-up comedy might be in part to perform in a way that is funny. But maybe that’s not all there is to it. Some might value an element of insightfulness about society or the human condition. If so, success at stand-up comedy might not be entirely about getting laughs. The point is simply that domains exist which contain complex ideals of success.

Indeed, domains exist in which the ideals of success are contested, and perhaps even shifting, as the agents who act and compete in these domains explore the space.

In more regimented cases, ideals of success become adumbrated – sometimes explicitly, via rules, and sometimes implicitly, via agreements among sets of agents – by various constraints. For example, we sometimes find constraints on permissible behavior-types. In hockey, you cannot take a golf club onto the ice rink.

Further, we sometimes find constraints on permissible circumstance-types. How I make breakfast for my kids has nothing to do with the level of skill I exercise at chess. When playing chess only a strictly regimented set of circumstances are relevant.

In virtue of the constraints that adumbrate a domain’s ideal of success, we often find an ordering over the goals common to agents in terms of centrality-to-success. In some games, this ordering remains largely informal, but most agents are aware of it because most agents know the rules and can see the broad means-ends structure the rules set up. Goals related to hitting
The targets of skill, and their importance

the baseball are more important than goals related to running the bases. Both are important, but if you had to choose, you would rather be an excellent hitter than an excellent runner. This is because hitting well is a more effective means to scoring runs. In some domains, disagreement regarding the complex ideal of success can lead to disagreements regarding which goals are more important. I would like to develop skill as a philosopher. Should I spend my time immersed in imaginative science fiction? Should I memorize all the key distinctions charted by recent analytic philosophy? Or should I read the classics instead? Should I immerse myself in politics and culture? Should I rigorously study various logics? Maybe I should do all of these. But reasonable people can disagree about which ones are more important for the development of skill at philosophy.

Action-domains are a very general category. Almost anything can be a domain. Domains can be constructed on the fly. Does this generality pose a problem for an account of skill?

I think not. This is just the nature of the case. There are many degrees of freedom regarding how human agency is structured, and regarding our rationale for constructing any particular domain. Sometimes we select structured domains for the development of excellence, or for other reasons (see Nguyen 2019). Recall Calvinball—an absurd fictional game, created for laughs by a genius comic writer. But there are humans who play it, as the internet will confirm.

What is the upshot for skill? It seems the structure of skill can vary in terms of its sophistication. This is because the targets of skill vary widely in terms of their sophistication. Indeed, in Shepherd (forthcoming), I discuss the notion of partial skill that falls out of this point. The idea is that in some complex domains one way to succeed is to specialize at one important thing. In rugby, one may specialize as a kicker. In basketball, one may specialize as a long-range shooter. In philosophy, one may specialize in modal logic. In many domains, if one is good enough at one thing, the absence of skill at other elements within the domain can be forgiven.

If the structure of skill is variable, one might naturally ask for an account of the lowest common denominators of skill. Perhaps such an account can be provided—it might include elements such as control and knowledge how. But there may be a difference between this account and an account of some more specific skill whose target is sophisticated. Thus, clarity regarding a skill’s target is important for understanding the nature of that skill.

21.7 Conclusion

An account of the nature of skill provides an explanatory and conceptual architecture for inquiry into the shape skills often take, and for philosophical inquiry into connections between skill and other important phenomena—for example, control, intentional action, and knowledge. The perspective I have pushed in this chapter is that these questions about skill’s nature and structure will be impacted by one’s assumptions regarding the targets of skill, and the way skill’s targets set up constraints for skill’s honing through practice and its expression in behavior.

Reflection on skill’s variety suggests skills often run wider and deeper than talk of action-types alone can capture. A skilled debater is good at various kinds of reasoning, at listening, at a way of speaking, at synthesizing information, at presenting information. A skilled surgeon possesses a high degree of dexterity of hand and fingers, coupled with a refined understanding of the function of some part of the body, the ways this function may break down, the ways it may be repaired, as well as an ability to apply this understanding to a variety of case-types: to micro-differences in injury and damage and body-type. I have argued that the skilled agent is sometimes skilled at actions, and sometimes skilled at games. But more broadly, she is skilled at action-domains.
Notes

1 The author acknowledges two generous sources of support. First, funds from European Research Council Starting Grant 757698, awarded under the Horizon 2020 Programme for Research and Innovation. Second, the Canadian Institute for Advanced Research’s Azrieli Global Scholar Programme on Mind, Brain, and Consciousness.

2 Here I draw on my description of Infinite Stairs in Shepherd (forthcoming).

3 And it is, further, an open question whether skill qua skill is always constituted (even in part) by knowledge or understanding. It might be that while most skills depend upon knowledge and/or understanding, some skills are entirely a matter of (a) possession of good plans for success in the relevant game, and (b) high levels of control regarding the plans.

References

