Routledge Handbook of Conspiracy Theories

Michael Butter, Peter Knight

The Internet and the Spread of Conspiracy Content

Publication details
Simona Stano
Published online on: 26 Feb 2020

How to cite: Simona Stano. 26 Feb 2020, The Internet and the Spread of Conspiracy Content from: Routledge Handbook of Conspiracy Theories Routledge
Accessed on: 04 Oct 2023

PLEASE SCROLL DOWN FOR DOCUMENT

Full terms and conditions of use: https://www.routledgehandbooks.com/legal-notices/terms

This Document PDF may be used for research, teaching and private study purposes. Any substantial or systematic reproductions, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The publisher shall not be liable for an loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
4.8
THE INTERNET AND THE SPREAD OF CONSPIRACY CONTENT

Simona Stano

Introduction: The mediatisation of conspiracy theories

Contemporary media represent a particularly fertile ground for conspiracy theories (Craft et al. 2017). While in the past it was difficult to disseminate alternative views of important events (Olmsted 2009), things have radically changed in today’s communication environments, where advances in technology have made it relatively easy for people to disseminate a variety of narratives and points of view. This has resulted in a noticeable increase in media messages promoting conspiracy theories, with consequences on the public’s belief in such theories (cf. Mulligan, Habel 2012; Swami et al. 2013; Jolley, Douglas 2014a, 2014b; Einstein, Glick 2015). Official news and information are now more frequently put side by side with alternative versions, including unverified data and fake news. In fact, according to German sociologist and philosopher Jürgen Habermas, the separation between fact and fiction is often abandoned altogether:

News and reports and even editorial opinion are dressed up with all the accoutrements of entertainment literature…. What in this way only intimates itself in the daily press has progressed further in the newer media…. Under the common denominator of so-called human interest emerges the mixtum compositum of a pleasant and at the same time convenient subject for entertainment that, instead of doing justice to reality, has a tendency to present a substitute more palatable for consumption and more likely to give rise to an impersonal indulgence in stimulating relaxation than to a public use of reason…. With the arrival of the new media the form of communication as such has changed; they have had an impact, more penetrating (in the strict sense of the word) than was ever possible for the press.

(1991: 170)

Furthermore, technological advances in communication have caused a profound societal change with regard to how information is handled: Mistrust in institutional authorities and official information has resulted:

In the claim that everyone holds views of current events and of course also in the claim that these views are the only true ones…. Thus, conspiratorial interpreting in time has
become a part of the everyday self – evident handling of information for whose part it has gained popularity.

(Kimminich 2016: 36)

This does not necessarily mean that the Internet and new technologies are driving a new age of conspiracy theories (Uscinski, Parent 2014), but it is certainly relevant and indicates the need to deal with online communication to better understand conspiracy thinking in contemporary society. Therefore, this chapter aims precisely at analysing how conspiracy theories proliferate through contemporary online media – the so-called ‘new media’ – and with what effects. While a number of scholarly studies on conspiracy theories have focused on their manifestation in the mass media (e.g. literature, cinema, radio and television), in fact, only a few (see Erdmann 2016, Madisson 2016, Stano 2016, Thibault 2016 and, more generally, Leone 2016 for some case studies) have analysed them in digital media, providing interesting but limited results. The same applies to non-scholarly works (see, for instance, McMahon 2004). In order to fill this gap, the following paragraphs will make reference not only to research specifically addressing conspiracy theories, but also to relevant findings in communication studies, finally exploring a particularly relevant case study: Anti-vaccination conspiracy theories.

The Web 2.0: Increasing participation or dis-/misinformation?

The expression ‘Web 2.0’ (or ‘participatory’ or ‘social’ Web) was introduced by Darcy DiNucci in 1999 in reference to websites promoting participatory culture, allowing their users to interact easily with each other through user-generated content in virtual communities. The first stage of the World Wide Web’s evolution (the so-called ‘Web 1.0’) made access to online content mainly passive, because of the competences required to produce and distribute it. The Web 2.0, however, enhances users’ activity and participation by providing them with simpler tools for the creation and diffusion of online information. Blogs, social networks, online forums and other digital media have made it easier to produce and share content online. They allow personalised and multidirectional communication (many-to-many) that exploits the bi-directional channel of the network to go beyond the broadcasting model (one-to-many) typical of mass communication. Social networks, for instance, not only allow users to easily create and propagate textual, visual or audio-visual posts, but also have specific functions to help users react to and comment on such posts, as well as to re-share them (e.g. Twitter’s ‘retweet’ button, Pinterest’s ‘pin’ function, Facebook’s ‘share’ option or Tumblr’s ‘reblog’ function).

While such a transition has resulted in evident advances in communication and information systems, enhancing the democratisation of information and making it easier for people to share ideas and knowledge, it has also fomented ‘disinformation’ and ‘misinformation’. That is to say, it has resulted in the deliberate or unintentional spread of false or inaccurate information, allowing fake news and conspiracy theories to prosper. Information on social media, in fact, does not have to be investigated or confirmed in order to be shared, and this might lead to unsubstantiated and even false rumours spreading like wildfire. Some forms of control have been gradually introduced, precisely as a way to prevent, or at least try to reduce, misinformation, but as we discuss more in detail below, they have not proven to be particularly effective, and so deceptive and fake news still prosper on social media.

Evidently, such phenomena also existed before, but the speed and ubiquity of the Internet have provided an extremely fertile ground for alternative narratives, therefore resulting in their enlargement and rapid spread. Not only do people share and comment on official news and bulletins, but more frequently now, as facts occur, Internet users develop their own narratives.
The Internet and the spread of conspiracy through blogs and social networks even before such facts are covered by institutional media. As a result, the ‘global village’ postulated by Marshall McLuhan (1962; 1964) has rapidly taken the shape of an ‘alternative media ecosystem’ (Starbird 2017), namely a complex network of individuals and domains that, among other things, generate and promote conspiracy theories that undermine online readers’ trust in official information.

The propagation of conspiracy theories online

How do conspiracy theories propagate online? How do they manage to become at least as visible and shared as official and proven information? In order to answer these questions, the following paragraphs will briefly recall some models and theories developed to describe the spread of information on and through social media, to help us better understand how conspiracy theories circulate within contemporary mediascapes.

The metaphor of virality has been increasingly used to refer to online communication and, in particular, social networks (cf. Marino, Thibault 2016). The analogy with viruses suggests the idea of a sort of ‘contagion’ taking advantage of the permeability of culture to allow specific elements to penetrate, and therefore infect, its ‘D.N.A.’. In accordance with microbiology, such a model conceptualises viral texts as small infectious agents existing in the form of independent particles, whose ‘genetic code’, which is protected by a capsule and other layers that make it impenetrable from the outside, is capable of infecting the D.N.A. of culture’s ‘cells’, which have porous borders and are therefore open to external elements. In this view, viral particles evolve and reproduce by ‘poisoning’ (as the etymology of the word virus suggests) a host organism whose immune system is not able to impede – or at least limit – such a contagion.

Building on Richard Dawkins’s description of meme as a ‘unit of cultural transmission, or a unit of imitation’ (1976), that is to say a sort of ‘cultural gene’ moving from one brain to another (exactly as genes do move from one body to another), both scholarly (see, for instance, Shifman 2013; Cannizzaro 2016) and common language have increasingly adopted the idea of ‘Internet meme’ to describe such mechanisms of contagion. More specifically, the idea of virality has been used to refer to viral content circulating on the Internet (McKenzie 1996), thus reinterpreting Dawkins’ definition as a ‘fitting metaphor for Internet culture, affording exact copies of digital artifacts, rapid person-to-person spread, and enormous storage capacity’ (Marwick 2013: 12).

From such a perspective, the wide spread of conspiracy theories in contemporary mediascapes can be seen as an uncontrolled contagion that, thanks to both the permeability of culture and the agency of memes, has increasingly affected social discourses. Exactly as with other viral texts, conspiracy theories would have therefore progressively ‘infected’ the Internet, hence finding larger consent among its users.

However, this view is problematic, since it attributes to Web-users a passive role and represents them as infected objects of an external action (that of the viral content), rather than as active subjects. In other words, virality theories suggest the reductionist idea that messages are totally and unconditionally accepted by their receivers (as it was supported by some outmoded models of communication, such as the ‘magic bullet’ or ‘hypodermic needle’ theory). Conversely, research has shown that the media have selective influences on people and should be better described by step-flow models, which contrast the idea, claimed by the hypodermic needle theory, that people are directly influenced by mass media. According to the two-step flow model developed by Paul Lazarsfeld, Bernard Berelson and Hazel Gaudet (1948), for instance, ideas flow from mass media to opinion leaders, and from them to a wider population. Furthermore, as Henry Jenkins (cf. Jenkins et al. 2013) pointed out, memes do not have operational
capacity in themselves, which means that they cannot propagate without the active intervention of users. The porosity of culture, in other words, is not to be confused with the passivity of those who belong to it, as Lotman (1984) effectively pointed out by insisting on ideas such as the semiosphere’s resistance to change and the distinction between central and peripheral elements within it. Subjects inhabiting the cultural and communicative dimension cannot and should not be conceived as passive receptors, since they actively intervene on texts, making them become ‘viral’ precisely through an act of appropriation that refers not only to a specific intention but also to a particular knowledge (from the simple act of understanding such texts to their re-semantisation).

Consequently, if a contagion takes place, it seems to take the shape of a contact, as the etymology of the word suggests, rather than that of a contamination, as the common conception of virality assumes. In this respect, it is interesting to recall Giulia Ceriani’s analysis (2004) of contamination and fusion as inter-object relationships. According to the Italian scholar, these two modi operandi relate to the semantic axis ‘multiplicity’ vs. ‘unity’ in opposite ways: Contamination favours multiplicity, by making the original objects that are combined together (i.e. ‘contaminated’) still recognisable in the resulting object; by contrast, fusion completely denies variety, by creating a new, unique object while annihilating the pre-existing ones. In online communication, neither the original content nor the acts generating viral texts are easily distinguishable; most commonly, a new object is generated and any trace of the pre-existing texts that gave origin to it is lost. If a contamination takes place, therefore, it merely represents the anticipation of a subsequent process of fusion, which tends to make the former invisible. Any ‘fused’ object, in other terms, seems to follow a ‘rhizomatic development’ (Deleuze, Guattari 1980): It has no roots, nor vertical connections, but spreads horizontally, opposing the organisational structure of the tree-system that charts causality along chronological lines and looks for the origins of things.

An alternative description of the processes through which online content is able to propagate and reach large amounts of people is provided by Henry Jenkins, Sam Ford and Joshua Green in their book Spreadable Media: Creating Value and Meaning in a Networked Culture (2013). Here they contrast the concept of ‘stickiness’ – aggregating attention in centralised places – with that of ‘spreadability’ – dispersing content widely through formal and informal networks. While theories on virality are mainly based on stickiness, the three scholars argue that online content is not replicated perfectly, but rather ‘manipulated’ by users, who play therefore a key active role in such a process. In this view, the Internet does not merely enhance the replicability of the texts that circulate within it, but rather fosters their personalisation and reinterpretation by means of mechanisms of manipulation that function as a hook to both users’ engagement and agency (Marino 2015). In other words, each appropriation of an online text tends to restructure it, creating new forms and leading to its reinterpretation (Dusi, Spaziante 2006). Such mechanisms can be described primarily in terms of:

- **Sampling**: The adoption of a portion or ‘sample’ from a pre-existing text.
- **Remixing**: The structural modification of a text, including the insertion of new elements, which can be intentional but also unintentional.
- **Remaking**: The re-creation of a pre-existing text, which can more or less evidently alter such a text.

Regardless of the specific mechanism in action, it is important to notice that people tend not to simply share online content as it is, but rather to modify and incessantly reinterpret it (e.g. by adding comments, combining it with other texts, or de- and re-contextualising it). This evidently
requires a specific effort from users, conferring upon them an active role, and thus undermining the simple idea of a passive infection generally associated with the metaphor of virality. In this view, online conspiracy theories are not understood as the passive repetition of the same ‘infec-
tive’ content across the Internet, but rather as the active reinterpretation and adaptation of such content by users, who thus confer different meanings on them.

Another crucial characteristic of contemporary communicative systems that can help us better understand conspiracy theories and their propagation in today’s mediascapes is the so-called information overload: While the Internet has expanded the variety and amount of available information, creating a more diverse space for public debate, greater access to information has also made it more challenging for the user to evaluate the reliability of information. This has led scholars to denounce an excess of information, which has been described variously as ‘infobesity’ (Rogers et al. 2013), ‘infoxication’ (Chamorro-Premuzic 2014), ‘information anxiety’ (Wurman 2012), ‘explosion’ (Buckland 2017) or, most commonly, ‘overload’. In other words – while indisputably enhancing pluralism – the abundance of sources, news and opinions available on social media produces an effect of confusion and uncertainty that makes it difficult for users to choose which information to trust and focus on.

Simultaneously, the Web has seen the emergence of so-called echo chambers, that is to say, situations in which individuals are exposed only to information from like-minded individuals: Selective exposure to content is the primary driver of content diffusion and generates the formation of homogeneous clusters, i.e., ‘echo chambers.’ Indeed, homogeneity appears to be the primary driver for the diffusion of contents and each echo chamber has its own cascade dynamics.

(De Vicarió et al. 2016: 554)

Comparing Facebook pages reporting on scientific and conspiracy content, for instance, Quat-
trociocchi and Vicini (2016) showed that users who are deeply engaged in a community are more likely to become focused on particular topics, thus becoming ‘isolated’ from the neigh-
bouthing environment, i.e. other topics and views. Although there is no direct relation between such a phenomenon and the information overload, it is interesting to note the difference between the emotional effects deriving from them: Social media users are likely to find their opinions constantly ‘echoed’ back to them, which develops tunnel vision and reinforces individual belief systems over verified facts – the search for which is affected by the anxiety deriving from the unmanageable amount of information available on the Internet.

This configuration creates barriers to critical discourse on online media: It feeds propaganda and extremism and reduces democracy and critical debate (Sunstein 2017). In this respect, Cass Sunstein (2001) developed the idea of ‘information cascade’ – i.e. when Internet users pass on information they assume is true even though they cannot verify it – to claim that the Internet today creates ‘cybercascades’ of information that develop extremely rapidly and are therefore very difficult to control. Hence, fake news and conspiracy theories are more likely to prosper, generating large communities of supporters, as we will see in a specific case study below.

The spread of anti-vax conspiracy theories: A case study

Opposition to vaccination dates back to the introduction of vaccines themselves (Wolfe, Sharp 2002). Figure 4.8.1, for instance, shows a print by Charles William published in the early nine-
teenth century as propaganda against the smallpox vaccination. Some opponents of the vaccination, such as Dr Benjamin Moseley (physician at the Royal Hospital Chelsea), are named on the
Simona Stano

obelisk on the right; on the left the vaccinators, wearing bull’s horns and a tail, feed babies to the ‘Vaccination monster’, which has the front legs of a lion and the hind legs of a cow – symbolising brutality and a literal reference to the animal from which vaccination originated.

This image reflects the huge opposition to the smallpox vaccine in England and the U.S.A. in the nineteenth century: While some objected that it was administered by piercing the skin, others disliked that the vaccine came from an animal. Moreover, a number of people had a general distrust of medicine and many opposed the vaccine because they believed it violated their personal liberty (see Fullerton Lemons 2016).

Controversies, then, also extended to other substances and acts, from the dispute on the efficacy and safety of the diphtheria, tetanus and pertussis immunisation to the still lively debate regarding the use of a mercury-containing preservative called thimerosal, aluminium compounds or other substances considered toxic in vaccines, etc. Among these cases, there is one more than any other that has resulted in a number of widespread ‘anti-vax conspiracy theories’: The measles, mumps and rubella (M.M.R.) vaccine controversy, which is directly related to the discredited British former gastroenterologist Andrew Wakefield.

In 1998, Wakefield (and other scientists who later retracted their names from the study) published an article in *The Lancet* – one of the world’s oldest and most influential medical journals – suggesting a direct relationship between the M.M.R. vaccine and the development of autism and some chronic intestinal pathologies. In fact, the link was not explicitly stated in the paper, but research (Reeves 2005; Fahnestock 2009; Kolodziejski 2014, among others) has shown how the rhetorical and textual strategies adopted by Wakefield and his colleagues encouraged such an interpretation, while employing the same writing style of typical research papers.

Figure 4.8.1 ‘A monster being fed baskets of infants and excreting them with horns, symbolising vaccination and its effects’. Etching by C. Williams, 1802(?). Wellcome Collection (https://wellcomecollection.org/works/vbux8st5). Creative Commons Attribution (CC BY 4.0).
Less than a month after publication, in fact, the journal published seven letters (Beale 1998; Bedford et al. 1998; Black et al. 1998; Lee et al. 1998; Lindley, Milla 1998; O’Brien et al. 1998; Payne, Maxon 1998) that raised concerns about the article, and interpreted it as claiming a link between the M.M.R. vaccine and autism. (A number of scientists, scholars and journalists have since reinforced such an interpretation; see, for instance, Woolcock and Hawkes 2006; Poland and Jacobsen 2011; Rope 2010; Ropeik 2011.) Later on, in 2004, journalist Brian Deer (2004: cf. Deer 2011a, 2011b, 2011c) published an investigative report denouncing a conflict of interest on Wakefield’s part: While conducting the study, the then gastroenterologist received money from lawyers acting against M.M.R. manufacturers for parents of autistic children. Following Deer’s report, The Lancet officially retracted the article and, in 2010, the General Medical Council declared Wakefield’s research and conduct ‘irresponsible’ and ‘dishonest’ (G.M.C. report, quoted in Gorski 2010). As a result, Wakefield was struck off the U.K. medical register, and the British Medical Journal also declared his research ‘fraudulent’ in 2011. Notwithstanding, this case seems to have caused a considerable drop in vaccination rates not only in the U.K., but also globally: By 2002, immunisation rates dropped below 85 per cent, and even 75 per cent in some areas, and fell under the minimum for maintaining ‘herd immunity’ (Fitzpatrick 2004; Mascarelli 2011). Despite scientific research disproving Wakefield’s findings, anecdotal stories and personal experiences continue to keep the issue alive in the public sphere, specifically through new media, leading to the emergence of a new set of ‘anti-vax conspiracy theories’. As a result, there have been reports in recent years of an upsurge in diseases previously under control by vaccination. For example, the latest data by the World Health Organization (W.H.O. 2019) reported a 30 per cent increase in measles cases globally, leading international bodies (such as the W.H.O. itself) to include ‘vaccine hesitancy’ on the list of the biggest global health threats today. In other words, not only is the M.M.R. case related to viruses from a medical point of view, but it has also become ‘viral’ in terms of communication, affecting current perceptions and behaviours in spite of all official rejection and legal action against its fraudulent promoter. How can this development be understood and, particularly, what is the role of the Internet in this?

A considerable part of scientific research does not gain much attention beyond a restricted community of interested scientists. However, Wakefield’s article continues to garner attention on a global scale even 20 years after its publication, despite being repudiated by most of the authors involved in its publication and officially retracted by the journal that initially published it. Various factors should be considered to explain this. First of all, it should be noted that ‘much of the relevance of scientific articles is extratextual, not spelled out in the discourse but supplied by context’ (Fahnstock 1986: 278). In this sense, a crucial role was played by the press conference held the day before the article’s publication, in which Wakefield communicated his theory about M.M.R.-autism to the general public. Kolodziejski showed how, given the different interpretive practices employed in the public sphere, this communication created a sort of interpretative ‘short circuit’:

Whereas a like-minded technical audience well versed in communicating uncertainty should understand the speculative nature of hedged claims and the need for additional research to substantiate them, a public audience less familiar with the discursive norms of scientific rhetoric may interpret such statements as established claims. This ‘science by press conference’ process causes concern because it creates opportunities for researchers to present information that extends beyond what the reviewers thought they were authorizing in approving a piece for publication.

(2014: 180)
It should also be remembered that Wakefield took part in a series of other speeches and public appearances, recommending single vaccines rather than the combined M.M.R. vaccine, thus evidently influencing the context of reception of his article. As a result, in the media, the link between the M.M.R. vaccine and autism immediately became predominant.2

What is more, Wakefield himself has continued defending his research and anti-vaccine theory through various media, including a book (Callous Disregard: Autism and Vaccines – The Truth Behind a Tragedy, 2010) and a movie (Vaxxed: From Cover-Up to Catastrophe, 2016). Such works not only insist on the relation between the M.M.R. vaccine and autism, but also re-contextualise the retraction of the 1998 paper and its consequences in the frame of a ‘second level conspiracy theory’. This is manifest in their titles, which insist on ideas such as truth concealment, cruelty and tragedy (and even a real ‘catastrophe’!), and finds particular expression in the trailer of the movie. Just after the sponsors’ logos, in fact, the image zooms in on a ‘warning’ in white capital letters on a black background: ‘THE FILM THEY DON’T WANT YOU TO SEE’ (adopting the typical rhetorical style of conspiracy theories, with an undefined subject – ‘they’ – and a direct call to the addressee – ‘you’). A provocative question therefore appears, while a toxic-looking blue substance invades the screen: ‘ARE YOUR CHILDREN SAFE?’ (with a reiterated call to the addressee). The following scenes then clarify the meaning of such notices: Not only does a link between vaccines and autism exist, as Wakefield’s study revealed in 1998, but it has been covered up by the Centers for Disease Control and Prevention (C.D.C.), which allegedly manipulated and destroyed data about the effects of vaccines, as an insider revealed on a phone ‘confession’ to the environmental biologist Brian Hooker. Such arguments are supported by juxtaposing an audiovisual reconstruction of the phone call with short interviews with various ‘experts’ (from ‘medical journalist’ Del Bigtree to Doreen Granpeeshees, founder of the Center for Autism and Related Disorders, to ‘Senior Research Scientist’ Stephanie Steneff and Wakefield himself, presented as a ‘gastroenterologist’, without any mention of his expulsion from the medical register) and parents of children with autism, whose disorders are also insistently shown throughout the trailer.

The film recalls the textual strategies discussed for Wakefield’s article, although with changes in style and tone, as required by this particular medium. These strategies resulted in the same interpretative processes as for the article. While first scheduled to premiere at New York’s 2016 Tribeca Film Festival, the movie was withdrawn from the programme at a later stage, after doctors and health professionals denounced the screening and festival co-founder Robert De Niro reversed course, saying that the projection would not have contributed to a profitable discussion about medical and public health issues (see Goodman 2016; Ryzik 2016). Moreover, its description has been a matter of discussion, with Wakefield presenting it as a ‘documentary’, while critics (see, for instance, Kohn 2016; June 2016; Vonder Haar 2016) refer to it as a ‘pseudoscience film’.

As illustrated above, the various media initiatives Wakefield organised around his article are essential to understand contemporary anti-vax conspiracy theories, from the claims concerning the correlation between the M.M.R. vaccine and autism to those denouncing the institutional and political interests in covering up scientific research. What is more, the media played a crucial role in making the M.M.R.–autism controversy stand up against the retraction of the paper: Wakefield used the media to provide alternative versions of what happened and for what reasons, while his arguments and ideas quickly moved from the mass to the new media, generating a widespread cybercascade. Since the publication of the Lancet article, in fact, an increasing number of autism advocacy groups and individuals have continued to support Wakefield’s position on blogs, social networks (such as Facebook), comments to online articles about the retraction or on websites endorsed or founded by celebrities (e.g. Jenny McCarthy’s Generation Rescue).
The Internet and the spread of conspiracy

Such a phenomenon rapidly extended beyond Wakefield’s case, making social networks key actors in the rise and spread of forms of anti-vaccine conspiracionism online (cf. Wong 2019). Facebook search results for groups and pages about vaccines, for instance, seem to be dominated by anti-vax propaganda, while YouTube’s recommendation algorithm has been accused of driving users from fact-based medical information directly towards anti-vaccine misinformation. After criticism became manifest, both platforms started to address more efforts to control misinformation. However, their new policies have been primarily targeting fake news and hoaxes around politics (e.g. elections, immigration, racial discord, etc.), leaving anti-vaccination propaganda in the background. While both platforms have assured the public that they are exploring new options for addressing misinformation about vaccines and other health-related issues, as of writing, even a simple search for neutral words such as ‘vaccine’ or ‘vaccination’ steers users toward anti-vaccine groups. What is more, Facebook has been accepting advertising from anti-vax groups, such as Vax Truther, Anti-Vaxxer, Vaccines Revealed, Stop Mandatory Vaccination and others (Pilkington, Gleza 2019), thus further spreading misinformation. Such mechanisms evidently enhance an echo-chamber effect, since users are exposed only to anti-vax-oriented information, which reinforces tunnel vision. What is more, they function as a ‘hook’ for external users. People are redirected to the groups by search engines and algorithms, while the groups’ posts tend to promote emotional involvement, leading their members not only to express their ideas by ‘liking’ or reacting to them, but also to share them on their personal profile or within their social circles (Chiou, Tucker 2018). As a result, a number of Internet memes against vaccines, such as ironic drawings denouncing the conflicts of interest behind vaccinations or accusing them of causing illness in perfectly healthy children, have widely spread through social networks. These memes both play to the viewer’s emotion and employ sarcasm to create interest and involvement. In fact, humour and parody are among the factors that, according to Jenkins et al. (2013), make content spread, especially when they are used to criticise specific cultural patterns in contemporary societies. Despite their differences, both humour and parody foster spreadability because they represent ‘a vehicle by which people articulate and validate their relationships with those with whom they share the joke’ (Jenkins et al. 2013: 204). Furthermore, the visual aspect of these messages – with drawings, images, and captivating and easily readable fonts accompanying them – enhances their spreadability.

Aware of such mechanisms, scientists and experts have also started to use social media to contrast anti-vaccinist propaganda, with ironic messages proving to be particularly effective. For instance, Ah ma non è Lercio, an Italian satirical website and Facebook page that features fictional news in order to make fun of contemporary sensational journalism, released in 2014 a provocative article entitled ‘Anziano muore in un incidente stradale, la famiglia: ‘L’ha ucciso il vaccino’ [‘Elderly man dies in a car accident; his family: “A vaccine killed him”’]. This rapidly reached 1000 shares on Facebook and led to a number of ironic and also serious comments (for further details, see Stano 2016). Shares and interactions further increased as Lercio became more active on Facebook. Another nonsense satirical article entitled ‘Troppi metalli nei vaccini: bambino arrugginisce dopo il bagnetto’ [‘Too many metals in vaccines: kid gets rusty after taking a bath’], released in 2017 and posted on Lercio’s Facebook page in February 2019, obtained more than 22 000 reactions, almost 1000 comments (with a number of reactions each) and more than 5500 shares.

However, in some cases, this type of communication turned out to have adverse effects. For instance, in 2013, the Photoshop Phriday forum on the humour website Something Awful launched a competition requiring applicants to create an ironic image on the correlation between vaccines and the physical or mental diseases generally asserted by anti-vaccinists. One of the examples related vaccines to heroin, ironically depicting a drug addict slumped in a corner with
the text: ‘Their first injection was a vaccination: protect your children from vaccinations’, and slightly above, another satirical note: ‘Vaccination leaves a lasting psychological belief that injecting is beneficial. Children who are vaccinated are 85% more likely to inject heroin than those who are not.’ Although ironically intended, this image rapidly went viral on social networks and found its way on to Sunshine Coast Facebook pages, fomenting the idea that it illustrated a scarily real statistic linking heroin use to childhood vaccinations. The Sunshine Coast Local Medical Association president, Dr Minuskin, then publicly rejected the image, inviting everyone to stop sharing it:

If anyone receives this image via social media I would recommend they swiftly assign it to the trash box where it belongs. Not only is the information outrageously incorrect, it is irresponsible to be creating unwarranted fear about such an important issue.

(in Mikkelson 2015)

Nonetheless, users continued to comment on and to share the image. Ultimately, it also became appropriated by advocates of anti-vaccinsists’ propaganda, which accused vaccines of ‘serving as a gateway drug to heroin’ (Feminists Against Vaccination FB page, post left on 26 October 2015; the first post sharing the image appeared on 8 March 2015, as reported in Mikkelson 2015).

This example allows a series of interesting reflections. First of all, it is interesting to note that, unlike Charles William’s vaccination monster, which has remained unaltered until now, Internet memes about vaccinations have evidently changed rapidly as a result of the interpretative and communicative acts performed by the people who received, appropriated and shared it. Here is where, as we have seen, the concept of ‘spreadability’ comes into play, emphasising the audiences’ agency, since ‘their choices, investments, agendas, and actions determine what gets valued’ (Jenkins et al. 2013: 21).

Furthermore, this case evidently indicates the ‘fusion processes’ and the ‘rhizomatic development’ motivated by online content spreading: An explicitly ironic message was completely misunderstood (and therefore shared as real information) by various users and groups precisely because of the lack of roots indicating its origin and context. There is no identifiable author, nor context, since in most cases the original post was not included, and a new (sampled, and sometimes even remixed) object was generated. This further emphasises the users’ crucial role in online content spreading, since they ‘pluralize the meanings and pleasures mass culture offers, evade or resist its disciplinary efforts, fracture its homogeneity or coherence, raid or poach upon its terrain’ (Fiske 1989: 28). The uncontrollable and unpredictable path of this Internet meme clearly shows how people produce culture precisely by integrating products and texts into their everyday lives, sometimes even implying forms of misunderstanding and aberrant decoding.

Conclusion

The case of anti-vax conspiracy theories clearly shows how the Internet, and in particular social networks, have proved fundamental to the spread and development of such theories. Mass media played a crucial role in the reception and recognition of Wakefield’s arguments and the conspiracy theories originating from them, also including his more recent claims re-interpreting its rejection as part of a broader conspiracy trying to hide the truth. Later, social media permitted anti-vax propaganda and conspiracy theories to reach as widely as they do today, in various cases even independently from the British former doctor’s arguments. In fact, as we have seen, anti-vax conspiracy theories have developed in a horizontal fashion, lacking any hierarchical or causal
The Internet and the spread of conspiracy

structure that would allow us to easily trace their origin. On the contrary, they have been continuously sampled, remixed and even remade by online users, and, in the process, sometimes given new meanings. Such a rhizomatic development, in fact, is likely to cause misunderstanding and aberrant decoding, since it leaves no traces of the processes that led to it.

Nonetheless, this does not seem to acquire much importance within social media communications: Regardless of the truthfulness of posts and online content, people have not ceased sharing, reacting to and commenting on them, thus nurturing unpredictable and hardly stoppable cyberecascades. In fact, the forms of ‘online conviviality’ (Varis, Blommaert 2014) brought about by the Web 2.0 have made ‘social trust’ emerge and become the base of a number of narratives whose verification transcends any reference to proven facts, and rather relies on other narratives (Perissinotto 2016; cf. Erdmann 2016; Madisson 2016).

From such a perspective, therefore, conspiracy theories can be conceived as a symptom of a larger problem embedded in the infrastructure of current communication systems, that is to say, the so-called ‘post-truth’ era: In contemporary rhetoric, the subjective and passionate component (i.e. appeals to emotion and personal belief) has become evidently more influential than the referential one, to the extent that personal beliefs have replaced verified facts (Lorusso 2018). The considered case study suggests that the Web 2.0, and especially social media, motivate today’s post-truth society: The mechanism of followers and likes on which such media are based does not dismantle falsehoods, but rather reinforces them, making sharing and belonging prevail over reliability and truth. Thus, echoes resound louder and louder in the rooms of the Internet, where people, although creatively expressing their agency, are at risk of losing the crucial ability for effective communication and discerning reliable and accurate information from falsehood and fake news. In this sense, we would conclude, the rapid spread of conspiracy theories should not simply be dismissed as a symptom of a paranoid or unreasonable society, as it is sometimes claimed. It should rather be conceived and studied as a consequence of the limited access to factual truth and experiences characterising contemporary societies, as well as of the increased difficulty of verifying information brought about by the cyberecascades of contemporary information systems.

Notes
1 The theoretical part of this chapter is based on the first results of the research activities developed within the project COMFECTION, which has received funding from the E.U.’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement 795025. It reflects only the author’s view and the European Research Executive Agency is not responsible for any use that may be made of the information it contains.
2 On 26 February 1998, for instance, the Royal Free Hospital School of Medicine distributed a press release entitled ‘New research links autism and bowel disease’, and, the day after, B.B.C. News included ‘Child vaccine linked to autism’ within its news.

References

Deer, B. (2011a) ‘Secrets of the MMR scare: how the case against the MMR vaccine was fixed’, BMJ, 342: 77–82.

Gorski, D. (2010) ‘The general medical council to Andrew Wakefield: “The panel is satisfied that your conduct was irresponsible and dishonest”’, Science-Based Medicine, 1 February. Available at: https://sciencebasedmedicine.org/andrew-wakefield-the-panel-is-satisfied-that-your-conduct-was-irresponsible-and-dishonest/. [Accessed 26 April 2019.]

The Internet and the spread of conspiracy

Kohn, E. (2016) ‘“Vaxxed: from cover-up to catastrophe” is designed to trick you (review)’, *IndiWire*, 1 April. Available at: www.indiewire.com/2016/04/vaxxed-from-cover-up-to-catastrophe-is-designed-to-trick-you-review-21896/. [Accessed 20 April 2019.]

