The Routledge Handbook of Conference Interpreting

Michaela Albl-Mikasa, Elisabet Tiselius

Conference interpreting and expertise

Publication details
Barbara Moser-Mercer
Published online on: 30 Nov 2021

How to cite: Barbara Moser-Mercer. 30 Nov 2021, Conference interpreting and expertise from: The Routledge Handbook of Conference Interpreting Routledge
Accessed on: 20 Jul 2023

PLEASE SCROLL DOWN FOR DOCUMENT

Full terms and conditions of use: https://www.routledgehandbooks.com/legal-notices/terms

This Document PDF may be used for research, teaching and private study purposes. Any substantial or systematic reproductions, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The publisher shall not be liable for an loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
Conference interpreting and expertise

Barbara Moser-Mercer

Historical perspectives

Both simultaneous and consecutive interpreting rank among the more challenging cognitive skills bilinguals and multilinguals engage in; expert interpreters need to deploy a number of linguistic and cognitive control mechanisms in response to monitoring the different brain systems that contribute to fluid execution of their task (see Hervais-Adelman, Chapter 34, in this volume). Acquisition of high-level interpreting competence involves practice and experience, which prompts the question as to how such competence is acquired. Historically, interest in the acquisition of interpreting expertise grew as a new generation of post-war interpreters was “made” rather than “born”, encouraging experienced interpreting practitioners to develop models for interpreting pedagogy (Herbert 1952; Ilg & Lambert 1996; Rozan 1974) that were largely informed by professional practice (see Kalina & Barranco-Droege, Chapter 24, in this volume). By the early 1970s we saw the first appearance of research reflecting new disciplinary perspectives in the cognitive sciences in the study of simultaneous interpreters (Gerver 1976). Gerver’s information processing model of simultaneous interpreting was the first to describe in considerable detail the flow of information as processed by an interpreter in real time. Further cognitive models of the interpreting process evolved (Chernov 1973; Moser 1978) and interpreter trainers began to acknowledge the importance of cognition for understanding the interpreting process and for developing pedagogical models (Seleskovitch & Lederer 1984, 1989). The link between interpreter training and practice and psychological inquiry into the process was thus firmly established and research in interpreting would subsequently be influenced by evolving models in the cognitive sciences in general, and expertise in particular.

The emergence of the expertise paradigm in cognitive psychology

Intrigued by de Groot’s (1946) research on master chess players and their superior performance as compared to novices, cognitive psychologists Simon and Chase (1973) replicated de Groot’s studies and proposed that the highest level of mastery was associated with players’ ability to retrieve appropriate moves from a very large number of board patterns; they concluded after studying expert performance in sports and other areas of human endeavor that these experts
disposed of vast amounts of knowledge as well as of a pattern-based memory system acquired over many years of sustained practice. The concept of expertise was then elaborated by Chi, Glaser and Rees (1982) and researchers in this domain largely concluded that experts not only dispose of comprehensive domain knowledge, but that this knowledge is better organized, allowing them to identify patterns and search for solutions more efficiently; in short, experts see the forest rather than only trees, and they do so effortlessly at high speed with a low margin of error, characteristics of expert performance that would be particularly important for a high-speed task such as simultaneous interpreting.

A state-of-the-art summary of the emerging field of expertise offered a first overview of a theory of expertise (Ericsson & Smith 1991) and of the necessary conditions for reaching expert levels of performance, though not resolving the controversy over the role of innate individual differences (Ericsson 1996). A first comprehensive collection of perspectives, methods and approaches to the study of expertise (Ericsson et al. 2006) has been updated (Ericsson et al. 2018) to include different theoretical frameworks; core approaches for studying the structure of expertise such as psychometric methods (Ackerman & Beier 2018); analysis of activation and brain plasticity (Bilalic & Campitelli 2018); methods for how skill, expertise and expert performance develop and their relation to practice as evidenced in concurrent, retrospective and longitudinal approaches (Baker, Wattie & Schorer 2015), as well as select areas of cognition such as superior anticipation (Abernethy et al. 2018) and working memory (Ericsson et al. 2018), to single out those areas of immediate interest for the study of interpreting expertise.

Defining and acquiring expertise

According to Ericsson and Smith (1991: 2), “the study of expertise seeks to understand and account for what distinguishes outstanding individuals in a domain from less outstanding individuals in that domain, as well as from people in general”. Frensch and Sternberg (1989) as well as Ericsson and Lehman (1996) concurred in their description of the construct as “the ability, acquired by practice and experience, to perform qualitatively well in a particular task domain” (Frensch & Sternberg 1989: 158). A more comprehensive definition of the construct goes back to Chi, Glaser and Farr (1988) who define expertise through a list of experts’ salient characteristics: experts excel mainly in their own domain, they perceive large meaningful patterns in their domain, are faster than novices at performing their skills in their domain, have superior memory, see and represent a problem at a deeper level in their domain, spend considerable time analyzing a domain problem qualitatively, and have well-developed self-monitoring skills. Knowledge, experience and problem-solving skills thus are basic components of expertise; individuals can display different levels of competence in each of these basic components; it is only when individuals combine these efficiently to achieve effective results that we would identify them as experts. These definitions point to expertise being largely domain-specific, an assumption that continues to be tested to this day.

Expertise research has also leveraged the concept of mental models, first described by Johnson-Laird (1983) in terms of how human reasoning is based on the construction and evaluation of mental models of the world around us by using information both from our senses and from long-term memory. He identified the advantages experts have when faced with incomplete information in their area of expertise while still remaining capable of expert reasoning. Schumacher and Czerwinski refer to mental models in the acquisition of expert knowledge as “a collection of knowledge about a physical device, system, or process” (1992: 61), while also acknowledging alternative definitions such as mental models as metaphors or analogies, or process descriptions of how users interact with complex systems (1992: 62). To generate
evidence of mental models in the domain of expertise, Hoffman (1987) proposes methods such as structured interviews, limited-information tasks, and the tough-cases method, all of which have been used to highlight the importance of mental models for the acquisition and maintenance of expertise (Ericsson & Pool 2016) as they facilitate the processing of large amounts of information despite the limits of short-term memory, and allow for the development of sophisticated representations of complex situations that can subsequently be used to make fast and accurate decisions despite incomplete information and considerable time pressure. As such, the mental model approach also links across to memory research and, more specifically, to rehearsal and retrieval processes. Barrouillet and Grosset (2007) suggest that the creation of mental models may be linked to available processing resources, current knowledge, and reasoning context and that they do not occur in a content-independent manner. The mental models theory is also a cornerstone of Setton’s cognitive-pragmatic analysis of the interpreting process (1999), according to which the experienced interpreter builds up representations of each segment of discourse and allows for interpretation even before the representation is complete.

With the emergence of expertise studies as a sub-field of psychology, the key question of “nature vs nurture” and its scientific analysis generated a fair body of scientific literature on the development of expertise, the relationship between expertise and general cognition, the transfer of skills between domains and methodological issues and frameworks. Chi (2006) proposed two approaches to the study of expertise and its assessment, an absolute and a relative approach, whereby the former rests on the assumption that exceptional performance relies on a foundation of innate talent, while the latter presupposes a developmental dimension that allows novices to reach expert levels of performance through practice. Throughout the early stages of expertise research, psychologists agreed that significant amounts of time had to be devoted to skill development for someone to advance to mastery and that one did not have to be gifted or talented to achieve superior performance. The famous 10,000-hour rule, first introduced by Simon and Gilmartin (1973), and later refined by Posner (1988) and Ericsson (1996), continues to provide guidance to those aspiring to develop expertise in complex tasks, although calculations often depend on the exact definition of deliberate practice, a highly structured activity designed to improve performance (Ericsson et al. 1993), and of what constitutes an expert level in a given domain. The rule usually includes both the time spent on task during training as well as the early period of independent professional practice. As superior performance attracts the attention of the general public, outside of academe, Colvin’s (2010) bestselling book further reinforced the importance of specific and well-defined practice and feedback as the foundation for expertise, as does Gladwell (2008). The quest to better understand how, in the absence of innate talent, physiological and psychological constraints can be circumvented to attain expert performance (Feltovich et al. 2018) has had repercussions on many domains, including education. It has also prompted research on whether expertise may have both benefits as well as costs (Sternberg & Frensch 1992) and has contributed considerably to the literature on interpreting pedagogy and the neuroscientific study of interpreting expertise.

The competencies enumerated above that, according to Chi (2006), characterize experts are widely confirmed; however, she contends that expertise may also be domain-limited. This has been addressed extensively by Hatano and Inagaki (1986), who draw a clear distinction between routine and adaptive expertise in an effort to explain why some stall in their attempt to reach higher levels of expertise and others appear to be constrained by their expertise. They distinguish between the more domain-constrained routine experts who apply routine problem-solving procedures to familiar types of problems with speed and accuracy but are challenged with novel types of problems in their domain and adaptive experts capable of designing new
problem-solving procedures simply based on their extensive domain knowledge. The latter apply meta-cognition to routine procedures and are flexibly able to adapt these or invent entirely new ones if need be (Hatano 1982). These pedagogical approaches have since become central to problem- and project-based learning and the development of twenty-first-century skills (van Laar et al. 2020) as they align well with preparing students for deeper learning, higher-level thinking and inter-personal skills (Condliffe et al. 2016), and have made their way into interpreter education (Angelelli 2006).

In the current decade, competing methodologies and paradigms have challenged some of the fundamental premises of expertise development, such as the role of deliberate practice, pioneered by Ericsson et al. (1993) and disputed by Hambrick et al. (2016, 2020), who contend that the deliberate practice paradigm had influenced decades of research on expertise without its empirical evidence base being challenged. This has led to a systematic review of much of the earlier scientific literature on the subject, in an attempt to harmonize definitions to allow for greater comparability of data through a more precise definition and associated measurement of deliberate practice (Ericsson 2016). Much of this scientific review has centered on the nature vs. nurture debate, and the question why some people attain higher levels of performance with the same amount of practice than others. Hambrick (2019) thus proposes a multifactorial approach to the study of expertise that does not focus on training as the sole determining factor, but also tries to identify all factors that contribute to differences in expertise, whether experiential (nurture) or genetic-biological (nature).

There may even be a more substantive change in what is considered expertise, one not related to extraordinary performance in a specific domain, but more to extraordinary multi-tasking and capacity for rapid and life-long learning required in many of today’s jobs (Useem, 2019). This new direction may well refocus expertise research on the foundational competencies that constitute expertise in any domain and thus encourage a renewed interest in Hatano and Inagaki’s (1986) work on adaptive expertise.

Expertise and interpreting

This section strives to cover expertise in conference interpreting from three broad perspectives: (1) how concepts of talent, practice, motivation, focus and perseverance contribute to the development and maintenance of expert levels of performance; (2) how research in interpreting informs the acquisition and understanding of complex cognitive processes in general and expertise development in particular; and (3) how research in related fields could inform our understanding of interpreting and contribute to refining our methodological toolbox for studying it.

Defining expertise in interpreting

The study of interpreting expertise has long wrestled with a definition of interpreting expertise. Tiselius (2013) summarizes the arguments in favor of distinguishing competence as a sub-set of expertise in an effort to bring more clarity to what we mean by expertise in interpreting and postulates that competence in interpreting is at the core but does not necessarily imply expertise in interpreting. In their studies on interpreting expertise Yudes et al. (2011: 309) adopt Hoffman’s (1998) definition of expertise as the “set of special skills and knowledge derived from extensive experience within a knowledge domain”. Ericsson (2000) describes a three-step approach to studying interpreting expertise that involves capturing the reliably superior performance of expert interpreters, examining the processes that mediate such superior
performance in order to better understand mediating mechanisms, and ultimately explaining both the origins of such mechanisms and how they are acquired. Macnamara (2012) develops a model of interpreter aptitudes needed to develop expertise in interpreting, without explicitly defining such expertise. Macnamara and Maitra (2019) revisit the concept of deliberate practice as a prerequisite for acquiring expert levels of performance but do not commit to a specific definition of expertise. Liu (2008: 159) is more explicit when she defines expertise in interpreting as “the result of well-practiced strategies in each of the comprehension, translation, and production processes, and the interaction among these processes, which are specific to the needs of the task of simultaneous interpreting”. Linking across to terminology theory and the development of definitions (Gupta 2015; ISO 2009), efforts at defining expertise in interpreting have resulted mainly in researchers opting for an extensional definition, which attempts to list every possible object that belongs to the concept. From the crucial perspective of what the interpreting user would expect from an “expert” interpreter a functional definition describing the act of interpreting and its outcome should remain central to interpreting research as well, since it allows for more fine-grained distinctions among different contexts in which interpreting is performed and what service would be expected from a professional interpreter in these contexts (see Pradas Macías & Zwischenberger, Chapter 19, in this volume).

Approaching the challenge of defining expertise in a more differentiated way assigns to each category of user the responsibility to define the term more clearly; as such, every study related to expertise in interpreting should reference the researchers’ definition of expertise and levels of expertise in the population studied so as to allow for greater comparison of data and results (cf. Tiselius 2013).

Development and maintenance of expert levels of performance in interpreting

Central to our understanding of expertise in interpreting is without doubt how concepts of talent, practice, motivation, focus and perseverance contribute to the development and maintenance of expert levels of performance. However, users of interpreting services, the interpreting profession and those studying interpreters, may define expertise in interpreting from their particular perspectives.

As early as in the 1990s, interest in the expertise research paradigm for the study of interpreting led to the first publications focused on its potential for interpreting pedagogy (Hoffman 1997; Moser-Mercer 1997). The initial emphasis in interpreting research regarding expertise was thus on the study of novice and expert interpreters in an attempt to gain insight into the aptitude for and acquisition of this complex skill and, partly due to the high cost of training conference interpreters, to better predict learning outcomes (see Russo, Chapter 23, in this volume). Comparisons between trainees at different levels of skill acquisition tried to shed light on pivotal stages in the acquisition process as levels of automation of sub-processes were seen as signs of emerging expertise. Other early approaches were more focused on a product analysis in an attempt to identify strategies that mediate expert performance (Ivanova 1999) and could consequently be taught.

To understand the reasons for such interest in how interpreting expertise is acquired, it is useful to consider how research in cognitive psychology focused on skill acquisition. Sternberg’s (1998) operational definition of expertise already includes a set of abilities conducive to developing high-level performance; among these are moving from known to unknown information when solving problems, having well-structured networks of concepts and accessing these efficiently, spending time identifying optimum problem-solving strategies, automating sets of steps within such strategies and monitoring them, and making an effort to
represent problems conceptually. (See also Blumberg & Pringle 1982; and for self-regulation Davies et al. 2000; Matthews 1997; Zimmerman 2002, 2006; Zimmermann & Schunk 1989).

Bransford et al. (2000) advanced six principles that determine expertise: (1) experts notice features and meaningful patterns of information that novices do not; (2) experts have acquired significant content knowledge that reflects a deep understanding of a domain; (3) knowledge is organized in scenarios; (4) different aspects of knowledge can be retrieved easily and reliably; (5) experts are not necessarily able to train others; and (6) not all experts are able to adapt to new problems in their field.

It is significant to note that the temporary suspension of in-person meetings during the 2020 pandemic provided a segment of the interpreting profession with just enough time to upskill to remote simultaneous interpreting (RSI) and be ready to serve a vastly different virtual meeting industry either from their home office computer set-up or from dedicated centers equipped to support RSI in near-traditional conference room conditions and respecting a certain set of standards. Studying the characteristics of the early rapid adopters of RSI in the interpreting profession, such as talent, motivation, focus, practice or perseverance, and enabling factors such as economic drivers that supported that transition, will no doubt shed light on the components of adaptive expertise. Comparing this sample to a control group of interpreters who decided not to embrace RSI will further contribute to our understanding of the relative role of talent, practice, motivation, and perseverance. We would expect this to have an impact on how training in interpreting is optimally designed for a new kind of work environment, similarly to how research on expertise has influenced training methods over the past two decades.

The contribution of research to our understanding of expertise in interpreting

According to Ericsson and Smith (1991), the scientific study of expertise in any field should include three components: (1) capturing the essence of performance of a task under laboratory conditions and developing real-life tasks that can be replicated in the laboratory so that standardized performance parameters can be compared (Ericsson, Nandagopal & Roring 2009); (2) studying said performance parameters and interindividual differences in the laboratory; and (3) isolating the cognitive structures that mediated said performance. Differences in performance could then be attributed either to genetics, motivation or environmental factors present in the learning environment.

If we apply this proposed approach to interpreting research, the expertise paradigm could rely on prior empirical and theoretical work on fairly detailed descriptions of the interpreting process (Chernov 1994; Gerver 1976; Gile 2009; Moser 1978; Setton 1999) in order to capture the essence of task performance and the acquisition of the skill (Albl-Mikasa 2012; 2013; Moser-Mercer 2007). Given the challenges of controlled experimental designs to study interpreting in vivo, qualitative methods of retrospection, journaling and similar meta-cognitive tools (Englund Dimitrova & Tiselius 2009, 2014; Herring 2018; Hild 2015; Ivanova 2000; Monacelli 2000; Moser-Mercer 2000; Shlesinger 2000; Tiselius & Jenset 2011) were more widely used by researchers, often in combination, in order to triangulate data. With concurrent process tracing not a methodological option during interpreting (Englund Dimitrova & Tiselius 2009, 2014; Monacelli 2000), the method of choice has mostly been retrospective verbal process tracing which relies on recall of online processing (Herring 2018; Ivanova 2000; Tiselius 2013; Vik-Tuovinen 2002) and is thus also prone to interindividual differences in memory processes.

Increasingly refined research methods for studying expertise in interpreting produced a wealth of data not only in conference but also in dialogue interpreting (Herring 2018) but
reproducibility has remained elusive in studying expert performance in interpreting from a processing perspective: not only are expert and novice populations rather differently defined from one study to the next (Hervais-Adelman et al. 2018), as are the methods of process tracing such as concurrent or retrospective with or without a cue, stimulus presentation, the choice of constructs and indicators as well as the type of analysis of qualitative data. Much of this harks back to the scientific debate between Ericsson and Hambrick regarding deliberate practice as a mediator of expertise, its definition and representation in research data, and how it might explain the development of expertise. While such qualitative analyses do produce rich data, they have yet to ensure the design of standard task sets that are reproducible, especially under laboratory conditions. Studying clearly defined interpreter performance parameters systematically would likely lead to a more systematic approach to the study of interpreting expertise and could potentially inform the correlation of performance parameters with neuro-scientific data. The degree of variability in interpreting populations studied, as well as the lack of clear and agreed definitions of who qualifies as novice and/or expert, also extends to the role and place of working memory in interpreters (see Hodzik & Williams, Chapter 26, in this volume).

For example, Köpke (2009) concluded that the then available data on working memory performance of expert and novice interpreters were not conclusive, having produced contradictory results due to a lack of comparability across stimulus tasks and populations studied (see also Macnamara & Conway 2015). This further highlights the importance of more longitudinal studies that trace potential changes in processing and its supporting components through multiple data acquisition timepoints, rather than providing a one-time snapshot (Hervais-Adelman et al. 2017).

Differences between experts and novices appear to relate largely to performance on tasks that are specific to (simultaneous) interpreting. Liu et al. (2004) investigated subjects at different interpreting skill levels but with similar working memory capacity and found that experts’ superior performance was related to specific interpreting-domain tasks and not necessarily to superior working memory. Domain-specificity was also supported by the work of Yudes et al. (2011, 2013). Injoque et al. (2015) studied the interrelationship between expertise, working memory capacity, and articulatory suppression, indicating that working memory capacity may help experts compensate for articulatory suppression, which again points to domain-specificity. Similar conclusions were reached by Morales et al. (2015). Timarová (2008) concludes that studies of working memory in interpreting should include stimulus tasks more closely related to interpreting so as to arrive at a better understanding of specific executive functions (Moser-Mercer 2005; Timarová et al. 2014) that set experts and novices in interpreting apart. Dong et al. (2018) provided evidence of consecutive interpreters’ advantage in working memory updating efficiency, suggesting that the underlying mechanism of updating and recall in CI share the same attentional control process. Hiltunen et al. (2014) studied executive processes of simultaneous and consecutive interpreters and contrasted their performance in two working memory tasks unrelated to interpreting and found that interpreters outperform non-interpreters. This again demonstrates the somewhat inconclusive evidence base and underscores the importance of more ecologically valid and reproducible stimulus tasks that could enable rigorous meta-analysis of variables across working memory (WM) studies in interpreting. The most widely employed approaches to the study of WM in interpreting focused on whether expert interpreters have superior WM capacities compared to non-interpreters, the role of interpreter training in WM changes, and lastly WM as a sub-skill that contributes to expert performance in interpreting. Overall, the results have been inconclusive as the sample sizes have usually been small and definitions of different levels of expertise have compromised comparability and potential meta-analyses.
Other dimensions of expertise have been studied using the domain of interpreting to advance our understanding of how mastery of a complex skill might impact general cognition, such as self-regulation (Fan 2012; Herring 2018; Hild 2014), skill transfer across domains (Olivera Tovar-Espada 2014; Strobach et al. 2015; Van der Linden et al. 2018), extreme language use in bilinguals and extreme language control in interpreters (Christoffels et al. 2006; Hervais-Adelman, Moser-Mercer & Golestani 2015; Hervais-Adelman et al. 2015; Hervais-Adelman & Babcock 2019; Obler 2012), language control in multilinguals (Signorelli 2008), and potential contributions to the delay in cognitive ageing (Kurz et al. 2011; Liu et al. 2020). With regard to brain plasticity, Elmer et al. (2014) found reduced grey matter volumes in professional simultaneous interpreters, compared to multilingual controls, in the left middle-anterior cingulate gyrus, bilateral pars triangularis, left pars opercularis, bilateral middle part of the insula, and in the left supramarginal gyrus (SMG), suggesting evidence of an expertise-related grey matter architecture; Hervais-Adelman, Moser-Mercer and Golestani (2015) and Van de Putte et al. (2018) propose that interpreters on the road to expertise undergo plastic changes in specific control-related brain networks to handle the extreme language control that takes place during training. Babcock and Vallesi (2017) concluded that interpreters did not show advantages in conflict resolution or task switching where benefits for bilinguals have been noted in the literature, but rather that interpreters’ benefits are specific to their experience with interpreting. This lends further evidence to the notion that interpreting expertise is most notable when tasks are interpreting (domain-) specific. In their study interpreters also presented larger verbal and spatial memory spans compared to non-interpreter bilinguals. Dottori et al. (2020) presented results suggesting that interpreting experience involves distinct neural signatures across reading and translation mechanisms, but that these are systematically related with processing efficiency only in domains that face elevated demands during everyday practice such as interpreting from one language to another. Van der Linden et al. (2018) suggest that interpreter experience does not necessarily lead to general cognitive control advantages, but that there may be small interpreter advantages in short-term memory, a possibly important cognitive control aspect of simultaneous interpreting.

Research in fields related to expertise research in interpreting

What follows is an attempt to review recent research advances in cognitive neuroscience (see Hervais-Adelman, Chapter 34, in this volume), a field that potentially contributes to improving our understanding of expertise in interpreting and its development, as well as possibly contributing to enlarging its methodological toolbox beyond the tools already described above.

As the field of cognitive neuroscience matured, more complex experimental designs were used to study novice and expert interpreters in an attempt to develop a neurocognitive model of the process and further explore the neurobiological dimensions of the skill (Garcia 2019). This provided evidence of skill acquisition-dependent changes as automation of cognitive processing increases. Specific representational areas in the brain are also sensitive to skill-specific input and likely to change in response to the demands posed by skilled performance. Since simultaneous interpreting is training-dependent, changes in cognitive processing and resources required for skill execution can be expected to produce long-term functional and structural changes in the brain (Moser-Mercer 2010), both in general control areas and in domain-specific representational areas (Hervais-Adelman et al. 2017). Using multivariate pattern classification, the authors found distributed patterns of changes in functional responses from the first to a later
second scan that distinguished the interpreters from the controls, as well as reduced recruitment of the right caudate nucleus during simultaneous interpretation as a result of training, which is consistent with decreased demands on multilingual language control as the task becomes more automatized with practice. The authors further highlight the impact of simultaneous interpretation training on the brain functional response in a non-specifically linguistic cerebral structure involved in learning, motor control, and a variety of domain-general executive functions. The caudate nucleus can thus be considered an important structure and a central node in expertise-related networks. Hervais-Adelman and Babcock (2019) have shown that simultaneous interpreting engages a network of brain regions including those implicated in speech perception and production, language switching, self-monitoring, and selection. Through a review of existing data, they propose an integrative model of simultaneous interpreting that attempts to confirm existing theories of multilingual language control and sheds further light on the potential explanatory power of interpreting expertise. The complexity of cross-disciplinary approaches to research on expertise in interpreting generates lively debates on real effects found in studies within the cognitive neuroscience paradigm; lack of power, variability in subject selection and stimulus materials, and the definition of what constitutes expertise (Elmer 2016; Hervais-Adelman et al. 2018) present obstacles similar to those found in other behavioral studies of interpreting expertise.

Conclusion
In an effort to enhance our understanding of the interpreting process and of skill acquisition in interpreting this chapter has traced the study of expertise from its beginnings in cognitive psychology to how its key concepts and hypotheses were adopted and adapted by the field of interpreting research through the use of various behavioral and neuroscientific approaches and concluded with an attempt to correlate behavioral data with neuro-physiological evidence (Garcia 2019; Moser-Mercer 2010) from empirical work in interpreting. In doing so, it also sought to contribute to theoretical models of language processing in bilinguals and multilinguals. Together, the findings to date from the study of expertise in interpreting may inform not only models of simultaneous conference interpreting, but more generally those of expert cognitive processing. While considerable progress has been made in understanding the role of expertise and its development, particularly in interpreter education, much less attention has been paid to its role across the interpreter’s professional life span (Liu et al. 2020) and to the varied work environments and contexts even conference interpreters find themselves in. Interpreters’ work environments undergo rapid and significant change with potentially significant impact on cognitive processing; interpreting professionals’ ability and motivation to re-skill and user expectations of quality of performance suggest that increased research on functional definitions of interpreting expertise is needed. Such research should focus both on initial acquisition of expertise as well as its enhancement across the professional lifespan; it could have important policy implications and shape the way the interpreter of the future reaches levels of expert performance in the emerging new workplace(s). For this, objective measures of performance are needed as self-reports of interpreting performance, even if triangulated with interpreting product assessment, do not adequately describe or predict interpreting expertise. Expertise in interpreting has to be seen on a continuum, rather than as a dichotomy of novice-expert, and an improved understanding of the continuum of behavioral and brain changes, as well as our ability to position required levels of expertise for interpreting assignments on that continuum, have the potential to bridge the gap between academic approaches to the study of interpreting expertise and the needs of the interpreting profession.
Further reading

References

