Evolution of Metacognition

Janet Metcalfe

Published online on: 28 May 2008

How to cite :- Janet Metcalfe. 28 May 2008, Evolution of Metacognition from: Handbook of Metamemory and Memory Routledge
Accessed on: 21 Aug 2019
Evolution of Metacognition

Janet Metcalfe

Introduction

The importance of metacognition, in the evolution of human consciousness, has been emphasized by thinkers going back hundreds of years. While it is clear that people have metacognition, even when it is strictly defined as it is here, whether any other animals share this capability is the topic of this chapter. The empirical data on non-human metacognition are reviewed. It is concluded that three monkeys have now shown evidence of metacognition. Even in these primates, however, the capabilities are limited. Despite claims that rats have metacognition, the data can be explained in terms of mere conditioning contingencies. No other species has been shown to have metacognition. Thus, metacognition appears to be a very recently evolved capability. It is one that may confer on humans an ability to escape from being stimulus bound and allow self-control of their learning and actions.

Even before psychology was recognized as a separate discipline, scholars were fascinated by what we now call metacognition because self-reflective knowledge (i.e., metacognition) was thought to embody a particular kind of consciousness unique to human beings. According to a number of thinkers, this kind of consciousness bears a special connection to our “self” or our knowledge of ourselves, as in the maxim, “know thyself.” The notion that there is a looker, embedded within our cognitive fabric, that is somehow able to look at our other cognitive processes, has such compelling force as being a special entity to have provoked early philosophers from St. Augustine (see Harrison, 2006) to Descartes (1637/1999) to suppose that there is a disembodied soul. The modern analogue, while disavowing a nonphysical soul, is to claim that this self-reflective capability is nevertheless a special mental capability and a phenomenological experience that is specific to humans. This view has been articulately espoused by moderns from Armstrong (1968) to Rosenthal (2002) and holds considerable appeal. The idea is that whereas other species may have evolved adaptive characteristics such as the ability to fly, or, like the raptors, to see tiny movements many miles away, or, like the monarch butterfly, to eat foods that are poisonous to other animals, the human species has evolved — as its unique adaptive strength — a particular form of consciousness. The most elementary component of this form of consciousness is metacognition.
Is Metacognition a Special Kind of Consciousness?

Descartes, in what we now consider to be elaborate metacognitive musings, reached the conclusion that the fact of these musings — that he was able to think about his thinking — gave indisputable proof of his own existence. What Descartes was doing, when he was isolated in his poêle (a small cabin with a woodstove) thinking about the basis of all knowledge, was deeply metacognitive. He was considering whether his physical body might be different, and he acknowledged that it might. He was thinking about whether his perceptions might be faulty — which all modern psychologists and an entire tradition focused on illusions and distortions and biases of perception (see, e.g., Hochberg, 2003) resonate to. He was deliberating over whether his memories of his own personal experience might be wrong. The vulnerability of memory is, of course, now well established (Loftus, 2004). Despite all these possibilities of cognitive and perceptual distortions, which we now know extend even to the metacognitions themselves (see Bjork, 1994; Jacoby, Bjork, & Kelley, 1994; Metcalfe, 1998), what Descartes was unable to deny (cf., Russell, 1945/1972) was that there was somebody doing all of this reflection: him. This observation, that such metacognitive musings implicated a self who is the muser, had deep significance for Descartes and for subsequent thinkers.

Descartes reached a conclusion that most modern neuroscientists (e.g., Damasio, 1994), even those who ascribe to the importance of metacognition as entailing a special state of consciousness, might shy away from, namely, that the existence of such self-reflection implies that there must be a nonphysical soul. Descartes, of course, was a dualist and used his meditations to that end. However, one need not take a dualist stance to acknowledge the special status of metacognition in determining a particular kind of consciousness that may be available to humans and perhaps to other animals. The possible extension of this kind of consciousness to nonhumans was explicitly denied by Descartes, who believed that it, and hence the possibility of a soul, existed only in humans. The primary evidence weighing in on Descartes’ conclusion was that animals did not have language. And, to this day, although there have been many studies attempting to demonstrate that at least some nonhuman primates have language, none have done so definitively (Terrace, 2005; Terrace & Metcalfe, 2005).

To the nondualist, who might nevertheless acknowledge self-reflective consciousness as a unique cognitive capability, it seems plausible that this special kind of consciousness may have arisen during the course of evolution, and it may have had a particular adaptive value for the animals who have it, namely, us. It may allow them to do things (e.g., to reflect on their actions and their outcomes and change those actions as indicated by the reflection to obtain better results) that other animals cannot do. This ability to gain reflective control over their own behaviors may well have allowed our ancestors to survive under circumstances fatal to other animals. The advantages of being able to foresee and evaluate events in one’s mind’s eye beforehand rather than having one’s actions driven solely by the afferent stimuli seems self-evident. Being able to reflect on past occurrences also has its own adaptive value, freeing such an animal from the constraints of the stimulus and allowing more rational, adaptive future responding. Such consciousness may also have a benefit, to those who
had it, in terms of sexual selection — its presence being particularly attractive to potential mates. Being able to take another’s point of view — a sophisticated kind of metacognition known as theory of mind (Frith & Happe, 1999; Heyes, 1998; Leslie, 1987; Perner, 1991; Povinelli, 2000) — is indisputably appealing. People like feeling understood. It could also allow the person who has this ability to deceive more effectively, a trait that although despicable might provide certain evolutionary advantages for the person who has it (see Byrne & Whiten, 1992; de Waal, 1992; Whiten & Byrne, 1988, for anecdotes about the deceptive behavior of nonhuman primates and the consequences for mating success). One can entertain the idea that such a special kind of consciousness could evolve without necessarily accepting the postulate of Descartes that its existence is proof positive against materialism.

Comte’s Paradox

The introspection that there is inside of us some special-status looker who can observe its own internal cognitions resurfaced, in the last century, as Comte’s paradox. A paradox is defined as an apparently true statement that leads to a contradiction or to a situation that defies intuition. For Comte, how the mind or consciousness could both function and observe itself function seemed paradoxical. The fact that metacognition was, until very recently, perceived as a paradox is based on the deeply felt idea that consciousness is unitary and indivisible rather than piecemeal and fragmentary. The paradox depends on the statement being truly self-referential, in the strictest sense. But, as many perceptual psychologists have demonstrated (see Hochberg, 2003), perception is, itself, piecemeal and fragmentary, even though there is an illusion of a continuous whole. Perhaps the most dramatic example of this comes from recent change blindness (Simons & Chabris, 1999) studies, in which a person can be, for example, watching a videotape of a game of catch among several players and appear to have a whole and continuous perception of the entire field, with all of the players in this field. But this apparent wholeness and continuity is belied by the fact that a full-size person in a gorilla costume walks through the scene, stopping to beat his chest in the middle of the screen, and people, watching the ball throwing, do not see it. When told about the gorilla and shown the video again, they see it clearly, of course. Despite this gross omission — an enormous blind spot — they had no notion that there were any holes in their consciousness. It is simply that the notion of the unity of consciousness, and its apparent wholeness, is illusory. Our illusion of perceptual continuity (see Hochberg, 2003) is constructed from what we see and hear, from what we expect, and in a fragmentary way, from what we infer, with all of these components and a number of different modalities contributing in parallel.

Across modalities, it is straightforward to follow more than one line of consciousness, of course (so, cross-modal monitoring would not be paradoxical). One can drive and listen to the radio at the same time, being aware of both. But, even within a single modality, it has now been shown that the “spotlight of attention” (Treisman, 1986), which was originally thought to be a single indivisible spotlight (as would be consistent with the idea that Comte’s paradox might really be paradoxical) can be divided into two different and spatially discontinuous locations (Müller, Malinowski, Gruber,
& Hillyard, 2003) at the same time. Thus, as many elegant experimental studies of perception have shown, the assumption of a unitary consciousness does not hold.

Furthermore, even if consciousness were unitary in each moment of psychological time, the possibility remains that “function” and the reflection do not in fact co-occur in the same psychological moment. We might be able to observe our own mental function by taking a snapshot of it in one moment and looking at that snapshot (or its ghost in working memory) in the next — alternating back and forth. Many studies of working memory illustrate this capability.

Finally, there is no contradiction of logic that people might be conscious of more than one thing at a time, simultaneously entertaining the cognition or memory and one’s assessment of it in parallel. For Comte’s paradox to be a paradox and self-referential, the object reflected and the reflector must really be one and the same entity. From a neuroscience perspective, though, the brain is constantly monitoring and feeding back information at all levels. For example, Ochsner and Gross (2006) elaborated how the prefrontal cortex and the cingulate control system work in concert with subcortical (especially amygdala) emotional-generative systems to allow the modulation of emotional responses. Attentional regulation directs and controls other cognitive processes, and different aspects interact in a complex manner, as has been illustrated by a meta-analysis conducted by Wager and Smith (2003). To suppose that this could not be so — that doing and monitoring, or functioning and observing the functioning, could not co-occur — might well be considered quaint by modern neuroscience criteria. Thus, for Comte’s paradox to be a puzzle, one must affirm as unassailable certain assumptions about consciousness and about brain function — assumptions that modern research refutes.

Even so, the postulation of a “paradox” was taken seriously enough by early experimental researchers in metacognition to provoke an explicit theoretical solution. Nelson and Narens (1990), in response to this supposed conundrum, proposed that to allow that the mind could both function cognitively and observe its own cognitive functions there must exist two levels (of consciousness), a base, or object, level and a metalevel. This solution, of course, says that consciousness is not unitary, just as much modern neuroscience would affirm. This framework has been widely accepted.

Does Metacognition Imply an Infinite Regress?

The idea that there is a looker of sorts, functioning at the metalevel in Nelson and Narens’s framework, also withstands the “turtles all the way down,” or infinite regress, criticism. The criticism is based on the idea that if one has to have observation of cognition, then there must be a conscious observer inside the person’s head. That observer needs to be able to see what is going on at the basic cognitive level, and so it needs to be a full-blown internal person, or homunculus, complete with a fully elaborated perceptual-cognitive apparatus. But, then one needs to propose that there is a homunculus inside the head of the homunculus to be conscious of what it is seeing, and so on ad infinitum. This dissolves into absurdity. The “turtles” criticism depends on the postulate that observation, or monitoring, entails an elaborate observer, essentially a full-blown person. But monitoring, computationally at least,
can be extremely simple. A simple thermostat monitors the room temperature and can trigger an action (turn off the heat) without anything like a full-blown cognitive-perceptual apparatus. A model of metacognitive monitoring sufficient to produce the kind of metacognitive data people give in feeling-of-knowing experiments may involve only simple computation; see the work of Metcalfe (1993), who within the Composite Holographic Associative Recall Model or CHARM framework, was able to model nearly all of the known data on the feeling-of-knowing phenomenon by postulating only a simple computation of a correlation between an input vector and a trace vector. This entails only one computation, and it is one that is well documented as existing in the nervous system. Certainly, then, the possibility of metacognition—if it entails only such straightforward computations—is not threatened by the criticism of turtles all the way down.

It is interesting to note that it was not until our modern familiarity with ideas like semimodular brain function, parallel distributed cognitive processing capabilities, and a systems approach to the mind-brain that researchers were able to free themselves of the idea that a self-reflective capability was a deeply perplexing paradox. We now find the puzzlement puzzling and agree with Humphrey (1987) in saying, “The problem of self-observation producing an infinite regress is, I think, phony. No one would say that a person cannot use his own eyes to observe his own feet. No one would say, moreover, that he cannot use his own eyes, with the aid of a mirror, to observe his own eyes. Then why should anyone say a person cannot, at least in principle, use his own brain to observe his own brain?” (p. 11).

Although we no longer view humans’ metacognitive capability either as a paradox or as bearing some kind of mystical meaning, we do not rule out the possibility that this particular capability may be unique to humans, or that it bestows on them some cognitive, and adaptive, capabilities that may be missing in other creatures. Despite being demystified, it may still be special. But, to determine whether it is indeed specific to humans and to investigate empirically this question, we need first to define what is meant by metacognitive monitoring and control.

Definition of Metacognition

There are monitoring and control at all levels of the human and the animal mind-brain system. Indeed, the entire brain can be thought of as a giant feedback system, with virtually every pathway having both feedforward and feedback connections and multiple connections among different brain regions serving to allow the outcomes of one kind of processing to modulate other processes. So, if monitoring and feedback were all that was meant by metacognition, it would be pervasive, and there would be no question at all that most other animals also use such feedback. But, it is not simple feedback from one level interacting with processing at another that, alone, characterizes metacognition.

Furthermore, it is not simply the ability to make a discrimination or a judgment. Even very simple animals are able to make discriminating judgments about events in the world. Indeed, even nonanimals can make some of these. A plant apparently “judges” the lightness in its environment and moves, very slowly, toward the light.
Among animals, judgments about things in the world can be much more complex. A pigeon can make line-length discriminations. A rat can make at least eight alternative discriminations and reliably take the correct arm of a radial maze. Many animals can make duration discriminations. And, animals can show differential responses, including severe anxiety, when discriminations become very difficult. Pavlov (1927) made a circle a conditioned response to feeding, and an oval was made a food-negative response. Whenever a circle appeared, the dog would get food. When an oval appeared, it would not be fed. The poor dogs that, after this training, were exposed to stimuli halfway between the ovals and the circles showed symptoms of severe anxiety. Tolman (1932) also showed that animals given choices of stimuli between two discriminable categories can be “caught at the choice point” and be tugged simultaneously in two directions. The anxiety of Pavlov’s dogs suggests that such conflict may well have visceral (and noticeable) consequences. But even such dramatic responding to very difficult discriminations do not qualify as metacognition since they are merely responses to the afferent stimuli and do not concern judgments about internal representations.

Furthermore, the responses animals make can be quite complex without making them qualify as metacognition. Circus trainers are able to get animals — through well-understood conditioning techniques — to exhibit behaviors that are both complex, that are not seen in the animals in their normal untrained repertoire, and may involve multiple steps. This training typically starts with a simple response (perhaps as insignificant as getting the animal to turn in a certain direction or move a certain way) and through many trials builds on those initial small responses until an elaborate sequence of moves — like getting an elephant to stand on one foot on a bucket — can be produced. Thus, through this kind of shaping, animals can be trained to make fine-grained nonbinary discriminations about what they see and hear in the world, and they can perform multiple-step and complex responses. None of this requires metacognition.

Metacognition, then, is not merely a judgment among options, however refined, and regardless of the number of discriminanda. It is not merely the production of a complex multistep response, to get a reward. And, it is not the combination of a multistep response to a difficult discriminative judgment. Instead, it is a very special kind of judgment or commentary that involves a level of processing that we, here, call representational or cognitive (and that Nelson & Narens, 1990, 1994, called the object level) and a higher-level monitoring that we call metacognitive. A simple case of a cognition or a representation is a word or a symbol. A word is not the object in the world itself, but rather it refers to the object and is about the object. A memory is also a representation. It is not present in the world, but rather it is internal. If a memory is represented internally, and a person makes a judgment about that memory, then that judgment is a metacognitive judgment. Note, however, that judgments in some recognition tasks, in which the probes are given in the testing environment, do not qualify as being metacognitive since the person can make the judgment based on the probe that is present in the afferent environment and not the memory to which the probe refers. The probe, present in the stimuli environment, is not properly considered to be a mental representation even if its ongoing processing has been influenced by something that happened in the past. (Note that this critique applies to virtually
all implicit memory tasks. They are not metacognitive by the present criterion.) If a person just makes a judgment about something that he or she sees or hears, or even about his or her current fluency of processing, it is not metacognitive since it is not a judgment about a mental representation. Metacognition must be a judgment about an internal representation. Metacognition differs from mere judgment insofar as it is not stimulus bound or directly related to something in the animal’s afferent environment. Rather, it is about a mental representation. While denying metacognition, so defined, is supernatural, we might still maintain that it could be a truly extraordinary capability and explore its implications and evolution.

Usually, metacognition requires language (as Descartes intuited). The individual is asked whether he or she will know the answer to a question. To be unequivocal that the cognition queried is representational, a question can be posed about something that is not present in the immediate environment, like a memory. The participant then gives a rating on some scale about the answer or about whether he or she will be able to retrieve the answer later, for example. The question and the answer to the question are indisputably mental representations, or concepts at a cognitive level, so the rating is true metacognition. Although language is typically used in these assessments, if a researcher were clever enough to be able to administer metacognitive tests that were about nonverbal internal representations using responses such as betting rather than, say, verbally based rating scales, then it should be possible to determine whether animals have metacognition. And, indeed, there have been several recent attempts to do just that.

Do Other Primates Have Metacognition?

The attempt to determine whether any nonhumans have metacognition is important for a number of reasons, not the least of which is the question of whether we can use an animal model to gain understanding of human thought. While nobody would dispute that animal models of human responding hold huge promise in some domains, such as pain, fear, and stress reactions, there may be distinct limits. If no animals other than humans have metacognition, then certain states of consciousness simply cannot be studied with any subject other than a human one. But, perhaps animals have metacognition.

Call and Carpenter (2001) were among the first researchers to systematically attempt to investigate whether any nonhumans have metacognition. They asked whether there was any evidence that great apes knew what they themselves knew. The paradigm that they used was clever. They showed chimps or orangutans a choice food morsel hidden in one of two tubes. The apes reached immediately into the appropriate tube for the food. Then, the researcher placed a barrier between his hand, hiding the food in one of two tubes, and the line of sight of the ape. The apes, in this condition, did not know where the food was hidden. The question they asked was, Do the apes seek information when they know they do not know where the food is hidden? If they seek information, by looking into the tubes, before reaching, Call argued that this gives evidence that they know that they do not know, and that knowing that one does or does not know is metacognition. The looking behavior of the great apes
was much greater in the situation in which the hiding was hidden than when it was exposed. Young children of two years of age performed in much the same way as did the apes. But dogs, in contrast, did not seek information first (see Call, as cited in Terrace & Metcalfe, 2005).

Is this metacognition? The basic tenet in this research is that information seeking indicates metacognition. This is an interesting perspective on the question, but one that deserves intensive scrutiny. Does moving one’s eyes before reaching for an apple imply that one is using metacognition? If one found, for example, that squirrels or chipmunks or birds looked around — scanning the skies with their eyes or listening carefully with their ears for predators — before venturing out on an open field, would one thereby grant them metacognition? If an animal were running on a rough pathway or swinging through the jungle through the trees, would looking first before stepping or leaping, to see whether there was a hole at the next step or whether the branch was thick or thin that they were going to grasp, be an indication of metacognition? Probably not.

Other researchers have investigated the possibility of metacognition in animals other than humans as well. Smith, Shields, and Washburn (2003) reviewed a series of experiments, mostly from their own labs, investigating the possibility of metacognition with apes, monkeys, and dolphins. They likened metacognition to uncertainty judgments or, for those not willing to say that nonhumans are really “judging,” to indications of uncertainty. So, if the animal gave evidence that it was not sure of the answer or of the course of action to follow, then this was taken by Smith and colleagues to be evidence for metacognition. It is interesting that Smith appears to have picked up on a different aspect of Descartes’ thinking — the ability to doubt — rather than the more standard self-reflective component.

Smith and colleagues (see Shields, Smith, & Washburn, 1997) conducted many classification tasks with animals in which the animals were trained to make one response to a particular category and a different response to a second category on the same dimension. Then, they would expose the animal to a situation in which the two categories blended smoothly into one another. An example would be a dot density discrimination task in which the animals were trained to make Response A to dense displays and Response B to less-dense displays. They were then given displays of intermediate density. They allowed the animals to give an escape response to get some reward reliably and found that in these intermediate or what they called “don’t know” situations, the animal would often choose to hit the escape button. These “uncertainty” responses held along a number of dimensions, such as loudness, length of sound, pitch discrimination, density, and so on. They also held for a number of species: apes, monkeys, and dolphins.

Furthermore, Shields, Smith, Guttmannova, and Washburn (2005) have shown that the uncertainty functions in these animals have much the same form as did analogous functions when humans were the participants. Undoubtedly, humans and nonhuman animals respond in a similar way on these materials. The question remains, though, regarding whether these results indicate metacognition either in the nonhumans or in the humans?

On several grounds, I suggest that the answer is no. First, it is not obvious that the escape button really does mean to the animal that the animal does not know (even
Evolution of Metacognition

if it does have that meaning to the human). Maybe it just means that there is a third category — intermediate-length lines or moderate density — for which it can get the best possible rewards by hitting the button that the experimenter thinks is the escape or uncertainty button. But, to the animal this button is just a third category label. There is no question that even animals less intelligent than dolphins can make at least eight item discriminations, witness the eight-arm radial maze used universally in studies with rats. So, showing that a nonhuman animal can make a three-part rather than just a binary discrimination is not evidence for metacognition.

Second, the stimuli about which the animals are responding are present in the environment that the animal can see, hear, smell, or touch when they start to make their responses in these studies. They are not memories. Thus, even if the responses they are making are judgments (but see above), because they are not about internal representations, they are not metacognitive judgments. The elementary qualification that metacognition be a judgment about a representation is not met.

It is interesting that Smith et al. (2003) noted in their review article that it had been recommended by early researchers that the judgments animals make be done retrospectively — allowing them to give the primary response then make their confidence judgment, as is usually done with humans. This procedure would increase the chance that the judgment was about a representation rather than about the stimulus itself. But, they noted that, “The catch is that animals have so far not been able to report their confidence this way” (p. 8). Because these studies do not meet this fundamental criterion of being about a representation, it seems prudent to be skeptical about whether any of these studies indicated metacognition in nonhumans.

Hampton (2001, 2005), however, devised a task that, while not involving long-term memory, did involve an elementary form of memory. In an experiment with two rhesus monkeys, Hampton (2001) used a task called a delayed-match-to-sample task, in which the stimulus was no longer present in the environment when the monkeys had to make a decision about whether to take a test. Thus, Hampton’s paradigm goes a long way toward countering criticisms of Smith’s procedures. The stimulus being judged was not present, so there was at least the possibility that the judgment was about an internal representation rather than about a stimulus that was present at the time of judgment. Furthermore, Hampton rotated through four stimuli each day, randomly choosing one of the four as the target on each trial. The monkey had to remember which stimulus was correct on each trial, and all four of the alternatives had been equally reinforced in this role. Thus, it was not merely a discrimination conditioning task (as could have been the case in the studies Smith reviewed), but instead Hampton’s task was a difficult memory task.

At each session, Hampton presented the monkeys one of four images that it had to touch on the computer touch screen three times. This multiple touching was designed to improve the chances that the monkey saw the to-be-remembered item. Then, a delay was intervened, during which, on two thirds of the trials, the animal was given a choice of whether it wanted to take the test or decline to take the test. If it wanted to take the test, it touched one icon; to decline, it touched another icon. If the monkey chose to take the test, it was given a four-alternative forced-choice test, with all four of the stimuli that had been used in that session as the alternatives, a few moments later. If it touched the item that it had seen on the present trial, it got a peanut. If it
touched one of the three incorrect items, it got nothing. If the monkey declined to take the test, it got a primate pellet (which it liked more than nothing but not as much as peanuts). On the remaining one third of the trials, the monkey was forced to take the test, without an intervening choice.

The data on the first experiment showed that accuracy was better, for both monkeys, when they had chosen to take the test than when they had been forced to take the test. In an additional experiment, a time delay was manipulated. Although both monkeys chose to take the test more often at short intervals, and both monkeys numerically showed better performance at all time intervals when they chose, the data for only one monkey showed this difference in performance to be significant.

Did this study show that monkeys have metacognition? First, since only one of the two monkeys showed a significant effect on all criteria, we might, at best, have evidence that one monkey has shown metacognition. Experimental psychologists testing humans, though, prefer larger sample sizes and more consistency before reaching important conclusions and would prefer a criterion of something like 1/20 that their results are not just an accident. Still, the second monkey did show effects in the right direction. Second, the delays in the match-to-sample task were rather short (at the longest only 240 seconds) relative to those used in some metacognitive studies with humans. Thus, it may be controversial that these working memory representations should really be considered memories rather than something more akin to afterimages. Still, the stimulus itself was not present at the time the judgment was made, and this is a great improvement in methodology. Third, the task was not a simple discrimination learning task but involved an ongoing and changing memory (albeit with a brief delay), so the experiment avoids this criticism. Finally, the alternatives were not present when the judgment was made, so the judgment could not be made by simply assessing the fluency of each alternative. (When the test questions are present, even pigeons can do such tasks.) The fact that the alternatives were not present when the judgment was made allows this experiment to avoid another criticism. These data, then, suggest — although perhaps not as strongly as one would like — that monkeys may have some metacognitive capabilities. It was the first to do so.

Son and Kornell (2005) also provided some data indicating that rhesus monkeys have at least a glimmering of metacognition. They trained two monkeys (Lashley and Ebbinghaus) to do a line-length discrimination task. After the monkeys had seen the lines and made their choice of which was the longer (or shorter) line, they were then trained to select, on a touch screen, whether they wanted “to bet” on their answer. Note that neither the stimulus nor their choice on the test was present on the screen (although there was no extended time interval between the response and the judgments; note that this paradigm fits what early researchers had suggested and Shields et al., 2005, had thought could not be done). If the monkeys chose the “high-risk” icon on the touch screen and their response had been correct, they received several token rewards that, when enough tokens had been accumulated, resulted in a food reward. If they chose the “low-risk” icon, only one token reward was given, but it was given whether the answer had been correct or not. Son and Kornell reasoned that if the monkeys knew if they had made the correct response, that is, they had high confidence in their response, they should choose the high-risk icon. If they either were not sure or knew they had made the wrong response, they should choose the low-risk
icon. This is just what they did. The data showed that both monkeys were more likely to choose the high-risk button when they had been right rather than wrong. The animals were also able to make these confidence judgments appropriately about a dot density discrimination task. However, it might be possible to criticize these results on the grounds that the monkeys had simply learned to make a two-part response, through some shaping procedure, to a conditioned discrimination. The high-confidence response might not have been analogous to a human confidence judgment about the choice but instead might have been a shaped single response. Such shaped responses, involving multiple steps, are common in animal training. For example, a circus trainer might achieve the final result of getting an elephant to stand on a bucket by such shaped multiple steps. The training might first involve getting the elephant to get close to the bucket and only then to raise its foot, then touch the bucket, and finally put its foot on the bucket and stand on it. However, such shaping would not be expected to transfer to a novel situation, as did the judgment in Son and Kornell’s experiment.

Even more impressive, then, was the fact that these retrospective confidence judgments were observed to be appropriate immediately on a previously learned bona fide memory task, suggesting that they really were something like confidence judgments rather than part of a single shaping sequence. Kornell, Son, and Terrace (2007) showed transfer of the high-risk/low-risk response on the first trial to a memory task that the monkeys had independently been trained to perform. The monkeys saw a series of six pictures and then had to do a recognition task on the first trial to a memory task in which they chose the correct picture from an array of one target and eight distracters. After doing the immediate recognition task (and having the screen clear, so that the test alternatives and their response were no longer in view), the monkeys were given the high-risk/low-risk icon choice. They immediately chose appropriately. The correlation between choosing high risk on trials in which they had given the correct response and low risk on trials in which they had not was significantly greater than zero for both monkeys. The three panels of Figure 1 show Ebbinghaus first doing the memory task correctly, then being exposed to the confidence icons, and then expressing his high confidence in his correct choice.

While the time lags in Hampton’s (2001) and Kornell et al.’s (2007) tasks were both small, so the depth of the representation that was judged was not very impressive, they nevertheless were experiments in which the stimuli were not present in the environment when the judgment was made. In addition, in neither task were the test alternatives present when the judgment was being made. Furthermore, they were about memories; they were not conditioned discriminations. The rewarded stimulus changed on every trial in both experiments. These factors provide some reassurance that the animals may actually have been making some kind of assessments about their own knowledge, in the former case whether they knew the answer or not, and in the latter whether they had given the correct response or not. These experiments are the most rigorous that have given positive results suggesting that any nonhuman animal is capable of metacognition of any sort (even though the limitations on the metacognition are, of course, extreme). It appears that three monkeys alive today have metacognitive abilities. It remains to be seen if this is a more general cognitive capability.
Do Any Nonprimates Have Metacognition?

We can, in good conscience, grant some limited metacognitive abilities to these three monkeys. Are any animals, other than primates, capable of metacognition? Of course, the answer must be that we do not know. Most animals have not been tested. However, Inman and Shettleworth (1999) and Sutton and Shettleworth (2007) have tested pigeons and have concluded that they do not show evidence for metacognition. The task that the former used was somewhat similar to that used by Hampton (2001).

Figure 1 Panel A shows Ebbinghaus correctly choosing the to-be-remembered item in a recognition task. Panel B shows him thinking when the confidence icons appear. Panel C shows him choosing the high-risk (high-confidence) icon.
It was a three-alternative (rather than a four-alternative) delayed-match-to-sample task. When the delay was increased, much as had been the case with the monkeys, the chance that the pigeons chose the escape (or uncertain) option increased. However, in striking contrast to the results found with the monkeys, who were able to do this task with above-chance accuracy when the test stimuli were not present, the pigeons were unable to perform the task unless the test alternatives were present when they made their choice. This is telling. If metacognition entails a judgment about a memory or an internal representation and the delay was needed to ensure that the judgment was about a representation, then this was the correct way to test for metacognition. The pigeons were unable to do it, and this is just what the researchers concluded.

Furthermore, Sutton and Shettleworth (2007) tried to elicit retrospective confidence judgments, similar to those studied by Kornell et al. (2007), from pigeons. Again, the birds were at chance unless the test stimuli were present. The conclusion, to date, is that although they have been tested, the results on pigeons indicate no metacognition.

Recently, Foote and Crystal (2007) have claimed, to much fanfare, that rats have metacognition. This conclusion, while well publicized in the popular media, is far from universally accepted. Staddon, Jozefowiez, and Cerutti (2007), for example, have written a detailed rebuttal, based on risk assessment.

Foote and Crystal (2007) trained 8 rats to do a duration discrimination task in which a tone was heard for either a long time or a short time. The rats were given considerable training in this discrimination task, being reinforced for choosing the correct button to get a reward for “saying” long — by choosing one button — or saying short by choosing the other button. In the next phase, the rats were allowed to poke their noses into one hole if they “wanted to take the test” and into another hole if they did not want to take the test. If they chose to take the test, they were then given the button-pressing test, and if they chose the “long” button when the tone was long, they got six rat pellets. If they chose the “short” button when the tone was short, they got six rat pellets. If, however, they chose the wrong button, they got nothing. A second hole for nose poking was introduced, and if they poked their noses into that hole — the “don’t take the test” hole — they got three rat pellets, regardless.

Rather than having only long and short durations, at the critical series of tests, the researchers included critical stimuli that were in between. Their logic was that if the trained up rats took the don’t-take-the-test nose poke, selectively, when the stimuli were of intermediate length, then they would be indicating that they did not know. If they were more accurate when they decided to take the test than when they were forced to take the test, this, they thought, would be an indication of metacognition.

Data were presented for 3 rats that were more likely to choose the don’t-take-the-test nose poke when the stimuli were intermediate stimuli than when they were either distinctively long or distinctively short. When those trials on which the animals were forced to take the test and those on which they chose to take the test were compared, they performed better with their own choice on the difficult intermediate stimuli. These results were interpreted as indicating that the rats were metacognitive.

It was a clever experiment and seems similar, on the surface, to that of Hampton, which did provide some evidence of metacognition. There are some critical differences, however. Most important is that the task was not a memory task but rather a conditioned discrimination task. It is not clear that mental representation or memory
proper was involved in this task at all. The animals may simply have learned a three-part discrimination. Second, there was no indication that the don’t-take-the-test button meant that to the rats who chose it. Instead, it may have been nothing more than a shaped multistep response. There was no transfer test, such as Kornell et al. (2007) had used, to show that the meaning of the decline-the-test button had any relevance to another task in which the animal might also opt to decline the test.

How would a nonmetacognitive animal do this task to give the results obtained? Well, certainly, one problem, and the first thing a skeptic might note is that only 3 of the 8 animals did it. So, the first possibility is that it was simply accidental.

Second, the fact that there were two linked responses — the nose poke and the button press — can easily be explained by ordinary shaping behavior. The elephant rewarded for putting its foot on the bucket first has to put its other foot beside it. The initial nose poke may be no more than part of the complex rewarded pattern of motion that was reinforced over many trials. Finally, it is well known (from Pavlov on) that animals are responsive to intermediate categories in a conditioned discrimination task. Thus, the animals may well have been sensitive to the degree of discrepancy a test stimulus exhibited from the long and short stimuli on which they were trained.

What about the contingencies under the conditions in the experiment? The reward, in the case of a clear long or short tone, was six pellets as long as the animal got it right, which it nearly always did. If not, the animal did not get pellets. But, the animal did not get the discrimination right when the stimuli were in the intermediate range. Indeed, the expected reward for tones exactly in the middle of the to-be-discriminated distribution was three. This was true if the rats decided to take the test, in which case they had a 50–50 chance of being right and getting six pellets or wrong and getting no pellets, yielding an expected gain of three pellets. It was also true if they decided not to take the test, in which case they got a sure three pellets. A nonmetacognitive rat might have learned that if the to-be-discriminated stimulus was in the middle of the range, it did not matter what it did: The expected gain was three pellets regardless. So, it is not surprising to see that when the stimulus duration was extreme — either very long or very short — the rats reliably did the thing they had been trained to do: poke their nose into the correct hole and choose the correct button. When the stimulus duration was in the middle — since it did not matter what the rat did, the expected gain is the same three pellets regardless — the rat is more likely to show random behavior. That is exactly what the data show. No metacognition need be involved.

One more thing: Why, on these intermediate stimuli, would the nonmetacognitive rat be more likely to be right when it has poked its nose into the hole that the experimenters think meant that it wanted to take the test? The answer is simple. The stimuli in question had a correct answer, according to the experimenter’s measurements: They were either slightly longer or slightly shorter in duration. They were not, in fact, exactly in the middle, where the odds were exactly the same for the different response combinations. When the rat perceived that a given stimulus was long (or short), it could get six pellets rather than three. The difference in performance in the intermediate range of stimuli only indicated that the rats had some discrimination of stimulus duration, even in this range, and that the responses allowed them to use
their own discrimination of the fine gradients when they were available. As Staddon et al. (2007) noted, this variability alone is enough to account for this seemingly convincing result. Rats, then, have not (yet) been shown to have metacognition.

Conclusion

Metacognition in humans provides them with the cognitive capability to assess their learning, their knowledge, and what would otherwise be their automatic responses to the stimuli in the world that drive behavior. How they do this has been the subject of intensive research (Blake, 1973; Butterfield, Nelson, & Peck, 1988; Costermans, Lories, & Ansay, 1992; Dunlosky, Rawson, & Middleton, 2005; Hertzog & Dixon, 1994; Koriat, 1993; Schneider, Visé, Lockl, & Nelson, 2000; Sikström & Jönsson, 2005). Not only do they have the capability to reflect on their mental representations, but also they take these reflections and put them to use in controlling how they will study (Finn, in press; Metcalfe & Finn, 2008); what they will choose to attempt to retrieve (Reder, 1987; Reder & Ritter, 1992); how they solve problems (Simon, 1979; Simon & Reed, 1976); and how they will behave with respect to other people (Call & Tomasello, 1999; Wimmer & Perner, 1983). All of these refined capabilities — both at the metacognitive and control levels — are highly elaborated in humans. And, although they are sometimes susceptible to biases and errors (Bjork, 1994; Metcalfe, 1986), they nevertheless provide a buffer between what might correctly be called “mindless” responding. Being reflections, which allow control of mental representations, these particular capabilities form the basis of what is usually referred to as mind (Donald, 1991; Suddendorf & Whiten, 2001). They are our escape from stimulus control and into self-control.

Was Descartes right in attributing this kind of consciousness only to humans? Insofar as he was describing a highly elaborated self-reflective capability, the answer has to be yes. However, that does not mean that Darwin (1859) was wrong. This capability, while highly developed in people, shows antecedents in nonhuman species, most particularly in primates. To date, no studies with any animals other than primates have provided convincing evidence for this particular capability, although one has to be impressed by the remarkable nonmetacognitive learning capabilities of nonprimates, such as rats. Panskepp and Burgdorf (2003), for example, claimed that rats laugh. There are a number of claims about the superior theory of mind capabilities of dogs. Perhaps most strikingly, the representational and time travel capabilities, as well as the deceptive capabilities, and episodic memory-like abilities of birds documented by Clayton (see, e.g., Dally, Emery, & Clayton, 2006) all seem astonishing. Perhaps, with further research, we will find traces of self-reflective consciousness — however elementary — in animals other than the three monkeys who have so far given evidence of some preliminary metacognitive capabilities.

References

