5

Sociotechnical Approaches to the Study of Information Systems

5.1 Sociotechnical Premise

Through this chapter, we introduce and explain the sociotechnical premise relative to the study of information systems (IS). The sociotechnical premise can be articulated as (1) the mutual constitution of people and technologies (and, specifically, digital technologies*), (2) the contextual embeddedness of this mutuality, and (3) the importance of collective action. Some readers will value this chapter for its breadth of coverage. Established sociotechnical scholars will likely thirst for more advanced discussions than what we provide here. Some readers will value the material in this chapter for identifying particular debates, current themes, or emerging approaches. We see this as a special opportunity and focus on these topics at the chapter’s end.

* For this chapter, we use technology to mean digital technologies, information and communication technologies (ICT), information technologies, and computer technologies. So, technology here is more narrowly circumscribed (than all kinds of technologies) but inclusive (of digital technologies) conceptual shorthand.
We begin by noting the widespread ethos within the IS research community that it is sociotechnical by definition. As Allen Lee notes:

Research in the information systems field examines more than just the technological system, or just the social system, or even the two side by side; in addition, it investigates the phenomena that emerge when the two interact. This embodies both a research perspective and a subject matter that differentiate the academic field of information systems from other disciplines. In this regard, our fields so called reference disciplines are actually poor models for our own field. They focus on the behavioral or the technological, but not on the emergent sociotechnical phenomena that set our field apart. For this reason, I no longer refer to them as reference disciplines, but as contributing disciplines at best (Lee 2001, p. iii).

Our goal in writing this chapter is to encourage scholars to move beyond this rhetorically pleasant articulation of sociotechnical thinking toward more deliberate conceptual development, increased empirical activity, and greater methodological capacity.

5.1.1 Mutual Constitution

Sociotechnical research is premised on the interdependent and inextricably linked relationships among the features of any technological object or system and the social norms, rules of use, and participation by a broad range of human stakeholders. This mutual constitution of social and technological is the basis of the term sociotechnical. Mutual constitution directs scholars to consider a phenomenon without making a priori judgments regarding the relative importance or significance of social or technological aspects (e.g., Bijker 1987, 1995; Latour 1999).

Mutual constitution differs from social determinism as social determinists see information and communication technologies (ICTs) as being caused by or created for the organizational needs and peoples’ decisions about how to meet those needs (albeit, imperfectly at times). In particular, socially deterministic researchers contend there cannot be any specific “effects of technology” attributable to the material qualities of technology. That is, the “cause” and the nature of “particular effects” are always social interpretations (Grint and Woolgar 1997).

Mutual constitution stands apart from technological determinism, which regards the technology as the main cause of organizational change. Technological determinists characterize ICT as an independent (and often the primary) variable. The essence of this cause-and-effect relationship is conveyed by the word “impact.” Technology is seen as an exogenous, independent, and material force that determines certain behavior of individual and organizations, producing predictable changes in organizational traits such as structure, size, decision-making, work routines, and performance (e.g., Leavitt and Whisler 1958; Pfeffer and Leblebici 1977).

Mutual constitution implies (1) both humans and technologies may have some sort of agency (some ability to act) in a given situation and (2) these actions are not deterministic (actions are not independent of surrounding events). The underlying premise of mutual constitution is coevolution among that which is technological and that which is social. The focus on interdependency among technology and human organization is done by attending to material triggers, actions of social groups, pressures from contextual influences, and the complex processes of development, adoption, adaptation, and use of new (digital) technologies in people’s social worlds (Jones and Orlikowski 2007). Directionality is a property of the situation, not inherent to a relation.

Why is this important? Barley (1988) argues a singular focus on the material aspects of technology leads researchers into inappropriate materialism. On the other hand, a focus on technology as a solely social production has led to an overreliance on social orders as primary drivers, potentially leading to social determinism. In contrast, the sociotechnical perspective, and in particular the principle of mutual constitution, speaks directly to the complex and dynamic interactions among technological capacities, social histories, situated context, human choices, and actions rather than looking for simplified causal agency.
5.1.2 View of Context

The second element of the sociotechnical premise is that all technologies are socially situated. Any IS or ICT is embedded into a social context that both adapts to, and helps to reshape, social worlds through the course of their design, development, deployment, and uses (e.g., Kling 1980; Land and Hirschheim 1983; Orlikowski 1992; Walsham 1993; Avgerou 2001). This situated and mutually adaptive conceptualization stands in contrast to much of the current IS research that is “… de-contextualized” (Lee and Sawyer 2009, p. 3), which is self-limiting in its failure to recognize the depth of social engagement. The desire for such an a-contextual perspective on IS (and ICT) continues to fascinate scholars (e.g., Brynjolfsson and Hitt 1996). However, this discourse, through its own framing, fails to account for social changes within which technological innovations unfold (e.g., Fleck 1994).

Adherents to de-contextualized models of IS pay too little attention to the environment of the organization and temporal dimension of technological innovation. For example, the literature focused on investigating the strategic implications of IS has sought to provide guidance for how to best harness strategic potential of new ICT/IS as a source of competitive advantage (e.g, Earl 1989; Morton 1991; Hammer and Champy 1993; Porter and Millar 1985). However, the depiction of an organization’s environment does not typically delve into the complicated social processes that embed technological innovation within organizational or social contexts. In addition, these approaches tend to ignore the temporal dimension of ICT. More than 20 years ago, Orlikowski and Baroudi (1991) found nearly 90% of IS research represents a single-snapshot data collection method, which does not include observations and data collection over time. This continues today (e.g., Avital 2000; Pollock and Williams 2009).

In contrast to a-contextualized and detemporalized approaches, the sociotechnical perspective is premised on the embedding of the ICT/IS into the more complex world of situated action: a world that is tightly tied to the characteristics of where the actions occur. In their analysis, sociotechnical scholars focus on situating work and seek to examine all contextual factors. This type of inquiry leads to a holistic view of context: one that does not diminish or remove contextual elements, even those with limited influence. In this situated view, context is not taken as fixed or delineable but is defined dynamically. Sociotechnical approaches focus on building situational and temporal conditions directly into their theories, relating these to conceptualizations of ICT/IS (e.g., Dourish 2004).

5.1.3 Collective Action

The third element of the sociotechnical premise is collective action: the pursuit of goal(s) by two or more interested parties (Merton 1968). Collective action undergirds the concept of organization (and all sociality) without implying positive or negative outcomes: there are shared pursuits. So (and typically), multiple parties pursue different goals, creating conflict. The underlying premise is the joint pursuit of one or more shared goals by two or more parties, focusing on the design, development, deployment, and uses of a particular ICT or IS, is both shaped by, and shapes, the nature of collective action.

Collective action means that joint interests and multiple goals are intertwined with both the context and the technological elements. Contemporary sociotechnical research focuses less on individual workers and simplified social situations—such as worker/manager differences—to attend more complex problematizations of social settings and tensions of multiple parties such as distributed online organizing (Sawyer and Eschenfelder 2002; Kling 2007).

5.1.4 Sociotechnical Premise in Contemporary IS Research

Sociotechnical approaches differ from what Kling and Lamb (2000) call “the standard model” of an IS. Standard models of IS focus on the technological aspects and pay far less attention to social roles and
Disciplinary Foundations and Global Impact

structures.* Second, standard models of IS decontextualize the work in search of generalities and best practices. Third, standard models of IS emphasize the cognitive and behavioral aspects of people’s involvement with technologies. The sociotechnical approach eschews simplifying rationales that seek a single or dominant cause of change. Instead, sociotechnical approaches foreground both the complexity and the uncertainty involved in the process of technologically involved change. In contrast to socially or technologically deterministic views, sociotechnical approaches require a detailed understanding of dynamic organizational processes and the occurrence of events over time in addition to knowledge about the intention of actors (situated rationality) and the features of technologies. As a result, studies in this stream of work construct neither independent nor dependent variables but instead adopt process logic to investigate the reciprocity and coevolution of the contextual interactions and outcomes (Barrett et al. 2006).

Sociotechnical researchers focus attention to the heterogeneous networks of institutions, people, and technological artifacts that together play roles in the design, development, deployment, take-up, and uses of any particular IS (Kling et al. 2003). So, as Michel Callon and John Law put it, any distinction between ICT (or IS) and society as context is an oversimplification that obscures the complex processes where human and technologies jointly construct sociotechnical entities (Callon and Law 1989).

5.2 Historical Roots and Conceptual Developments

In this section, we outline the historical roots of sociotechnical research.

5.2.1 Tavistock Tradition

The term “sociotechnical” was coined by researchers at the Tavistock Institute of Human Relations in England (Mumford 2000). The Tavistock Institute was founded in London in 1946 under the auspices of the Rockefeller Foundation. Its initial mission was to weave together social and psychological sciences in order to benefit a society damaged by the effects of the Second World War. Tavistock researchers, including therapists and a wide variety of consultants, strove to formulate techniques that could help to rehabilitate war-damaged soldiers (Jones 2004). Some Tavistock scholars came to believe that the same techniques could be employed in support of a more humane (and human-centered) organization of work in industry. These scholars suspected the Tavistock techniques would be applicable to the work of lower-rank employees who spent most of their time on routine and simple tasks without any clear prospect for job satisfaction or personal development (Mumford 2000).

This extension of the Tavistock agenda to the workplace showcased two attributes of sociotechnical scholarship that unfolded in quite different ways over time. The first, and most prominent, attribute is the close association between the technological and the social (sub-) systems of organizations. The technological elements, perceived as machines and associated work practices by Tavistock’s researchers, were not meant to be the sole controlling factor when a new technological system was implemented. Tavistock scholars advocated equal attention should be paid to providing a satisfactory work environment for employees. In this regard, the main innovation of the Tavistock research was the design of technology-supported work arrangements that could enrich work practices using multiskilled jobs with workers organized into teams. The sociotechnical approach was, in this way, *there exists an insightful body of IS literature focusing on social analyses of IS and ICT (Avgerou et al. 2004). These social analyses of IS and ICT emphasize the social and behavioral activities which frame and underpin the development, deployment, and uses of any ICT or IS. Social analysts take a strong social constructivist view on the sociotechnical relationships. Many social analyses draw on sociotechnical theories. But they take a “weak constructionist” view of the ICT. That is, the technological elements are seen primarily as an outcome of social practices and social forces, with the technology having little or no agency or impact. Our articulation of the sociotechnical premise differs primarily in the elevation of the importance of the ICT’s and IS’s roles—we assign some agency or the potential for direct effects to be of the ICT’s doing. In all other ways the sociotechnical perspective is very similar to the social analytic perspective.

© 2014 by Taylor & Francis Group, LLC
a rebellion against the evolution of work-design practices of the time (that took an instrumental view of work and the workforce).

The second attribute of the Tavistock approach was the importance of worker involvement. At its core, Tavistock’s sociotechnical approach was interventionist and activist. As we note later, this orientation to worker’s interests and activism underlies the action-research orientation of Enid Mumford’s Effective Technical and Human Implementation of Computer-based Systems (ETHICS) and Peter Checkland’s Soft Systems Method (SSM) (Mumford and Weir 1979; Checkland 1995), the participatory design principles that characterize the Scandinavian and Nordic scholarship, and perhaps some of the more contemporary design-centric approaches to IS.

The Tavistock researcher’s fundamental goal was to humanize jobs through redesigning work practices and workplace technologies while propagating democracy at work. This led to the formulation of theories that entailed concepts like “quality of working life” (Kling and Lamb 2000). These theories postulated that employees who were involved in the work system should be given a voice in the design process to determine how the new system could improve the quality of their work. In addition, the practical side of the sociotechnical approach sought to give equal weight to both technical and social aspects in the design process.

5.2.1.1 Early Developments of Sociotechnical Approaches in IS

The Tavistock approach to sociotechnical design inspired a number of researchers in the nascent field of IS. Enid Mumford, greatly influenced by her association with the Tavistock Institute, is considered to be the most influential researcher to initiate sociotechnical research within IS (Davenport 2008). She, along with her peers such as Frank Land and students (Land 2000), voiced concerns that the bulk of IS research and professional know-how were limited to engineering approaches that centered on the effective construction of reliable technical artifacts.

Mumford’s work placed the social context and human activities/needs at the center of IS design. The essence of the early sociotechnical discourse in IS is found in the proceedings of the “Human Choice and Computers” conference (Sackman 1975). The overall tone was critical of the perceived computer’s impact on social institutions like the social order of the workplace.

Findings from projects across the 1960s and 1970s were consolidated by Mumford and her colleagues and students and gave rise to an information systems development methodology called ETHICS (Mumford and Weir 1979). This methodology drew upon sociotechnical principles and involved a double-design effort: the design of IT-based systems/IS and the design of work processes. Initially, the two design efforts were conducted separately. The design of IS followed the technical system analysis method, whereas the design of work processes was aimed at the elicitation of “job satisfaction” requirements of workers. The latter analysis involved the application of work quality principles such as multi-skilled jobs. The two streams of design were brought together to achieve a “sociotechnical optimization” (Mumford 2006).

In ETHICS, the starting point was work design, rather than system design, and the methodology placed emphasis on the interaction of technologies and people. The main objective of the method was to develop IS that are both technically viable and entail social qualities that would lead to high worker satisfactions (Mumford and Weir 1979). To this end, an IS designed to solely meet technical requirements is “likely to have unpredictable human consequences” (Mumford and Weir 1979, p. 13). Therefore, ETHICS uncompromisingly elevated socially-centered approaches to system design and called attention to scoring the quality of working life in terms of fit between personal achievement and organizational goals.

* More recently, Alter’s work systems (Alter 2006) approach has rekindled interest in this approach, though his conceptual frame is not rooted in Tavistock or sociotechnical thinking.

† At about the same time, Peter Checkland advanced SSM as an IS design approach. Similar to ETHICS in its attention to human and technological subsystems, the conceptual framing builds from systems theory (see Checkland 1998, 1995).
5.2.1.2 Industrial Engineering/Human Factors

Scholars from other intellectual communities also drew from the Tavistock work, translating the sociotechnical principles into new intellectual communities and, in turn, impacting practice. One of the most successful of these translators was Albert Cherns (1976, 1987). Cherns was an associate of the Tavistock Institute and published his summation of sociotechnical design principles in *Human Relations* (see Table 5.1). The design principles Cherns laid out quickly gained prominence in the intellectual communities concerned with ergonomics, human factors, and large-scale systems design and usability.

For IS, Cherns’ sociotechnical principles were translated and introduced through two articles by Bostrom and Heinen (1977a,b).* This translation emphasized the computer-based IS as the focal technological subsystem and centered attention on its design rather than on the Tavistock principles of quality of working life. Bostrom and Heinen further problematized, and constrained, the social subsystem in two ways. First, they characterized the social aspects of an IS as emphasizing the tension between worker’s interests and manager’s interests. Second, Bostrom and Heinen defined workers (but not managers!) as users.

<table>
<thead>
<tr>
<th>TABLE 5.1 Chern’s Principles of Sociotechnical Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatibility</td>
</tr>
<tr>
<td>Minimal critical specification</td>
</tr>
<tr>
<td>The sociotechnical criterion</td>
</tr>
<tr>
<td>Multifunctionality principle</td>
</tr>
<tr>
<td>Boundary location</td>
</tr>
<tr>
<td>Information</td>
</tr>
<tr>
<td>Support congruence</td>
</tr>
<tr>
<td>Design and human values</td>
</tr>
<tr>
<td>Incompletion</td>
</tr>
</tbody>
</table>

* See also the more recent work of Clegg (2000).
Bostrom and Heinen’s problematization of the social system as workers versus managers, and their definition of workers as users, likely reflects contemporary management thinking of the 1970s in the United States. Contemporary scholars, such as Avgerou et al. (2004), who have built from and extended the Tavistock approaches to sociotechnical scholarship, are consistently critical of the conceptual limitations of this managerialist reframing and the diminished emphasis on humane design. And, while the Bostrom and Heinen papers are cited, their work has had a lesser impact on methods and concepts in IS than might be expected given the rhetorical enthusiasm for sociotechnical claims of IS.

5.2.1.3 Participatory Design and Worker Involvement

The importance of worker participation, fundamental to the Tavistock approach, was widely adopted in practice (Land et al. 1979; Land and Hirschheim 1983). In its original sense, user participation encouraged all intended users to be involved in all IS development tasks and stages. However, across the latter part of the twentieth century, user involvement was implemented in a much more limited way: Users were typically consulted primarily to learn about the tasks and the technical systems that support them, then not involved in the rest of the design process (Land et al. 1979).

However, the sociotechnical ideals of the Tavistock Institute found fertile ground in Scandinavian countries. In the late 1960s, “the Norwegian Industrial Democracy Projects” introduced the principle that technology innovation should improve work practices along with productivity measures (Thorsrud 1970). This was meant to empower employees to organize their own jobs. In the 1970s, figures like Kristen Nygaard—and more recently Bo Dahlbom, Pelle Ehn, Erik Stolterman, and their students—pioneered the Scandinavian approaches to the social analyses of computing. This approach reflects a strong orientation toward worker involvement in designing IS and attends to both the quality of working life and the potentially humanizing power of ICTs.

Perhaps the Tavistock approach garnered attention in Scandinavia because it resonated with the sociopolitical context grounded in deep appreciation for workers’ right (Sawyer and Tapia 2007). This tendency was also reflected in the principles of participatory design (PD) and more recently activity theory-centric approaches (Kuutti 1996).* In addition, the information system development methodology suggested by Mumford in the United Kingdom has been tried in Denmark and Sweden (Bjorn-Andersen and Eason 1980; Hedberg 1980). To this day, PD and social-theoretically inspired analyses of computing underpin much of information system research in the Scandinavian and Nordic countries (Iivari and Lytyinen 1998).

Despite its promising principles, sociotechnical design in IS failed to proliferate outside of the United Kingdom, Scandinavia, and the Nordic countries. During the 1990s, economic, business, and technological arenas witnessed dramatic changes; the consequences turned out to be frustrating for advocates of sociotechnical design. In the harsh competitive environment, corporations were forced to embark on methods like lean production and business process reengineering that took little consideration of employees’ needs or their quality of working life (Kling and Lamb 2000). As Carr (2008) notes, pointedly, the focus in corporate IT over the past 15 years has been to routinize, automate, and outsource. And, despite its progress in places like Scandinavia and the Nordic countries, few contemporary organizations were interested in adopting PD and sociotechnical design approaches.

Workplace trends across the 1990s had companies creating flatter hierarchies and encouraged people to see innovative companies as requiring highly skilled groups to work together as members of high-performance teams. While these trends expanded these organizational member’s responsibility and autonomy, this also created a more divided workplace as only high-status groups gained these benefits.

* An entire intellectual community, centered on participatory design, has grown up and meets every other year (see http://pdc2012.org/about.html) to advance sociotechnical design principles. Many of the leading scholars are known to the IS community but are more likely to publish in computer–human interaction (CHI) or computer–supported cooperative work (CSCW) venues.
Lower-status positions (e.g., service, support, and administrative) were often outsourced or transferred to temporary employment and given far less voice or status in the contemporary firm. This segmentation of the workforce further undermined sociotechnical approach, which targeted broad groups of organizational members (Mumford 2006).

5.2.2 Sociological Perspective on Sociotechnical Systems

Independent (at first) of the Tavistock efforts, in the late 1960s, some scholars in sociology began a stream of theorizing on the roles of ICT (e.g., Joerges 1990). These scholars typically focused on ICT relative to social structures such as groups, communities, organizations, social stratifications/societies, and changes in power and equity (e.g., Latham and Sassen 2005). The focal interest of sociologists, however, has led them to foregrounding macro-sociological interests relative to the roles of ICT in and of society. So, computing continues to be a tertiary topic for contemporary sociologists.*

The sociological perspective on sociotechnical systems unfolds in discourses that Kling (1980) sought to capture and articulate as belonging to the rhetoric of either "systems rationalists" or "segmented institutionalists". Systems rationalists focused on the positive, intended, and often technologically inspired opportunities from computing and automation of the workplace. Segmented institutionalists focused on the importance of social power, conflict, and pursuit of noncommensurate goals as the undergirding of any computerization activity.

And, as we turn to later, Kling and his colleagues thundered against the naïve simplifications of systems rationalists. In doing so, Kling and colleagues advanced—through empirical, methodological, and analytical efforts—a range of segmented institutionalist approaches to the sociological analysis of computing (Wellman and Hiltz 2004). This approach was not pursued by many computer scientists or IS scholars and even fewer sociologists (as Kling [2003] himself rued in a posthumously published reflection on his work). Many sociologists continue to grapple with the roles of ICT in social life, albeit with little attention to the work of Tavistock scholars, the IS community in Scandinavia, the Nordic countries, the United Kingdom, or the Kling-inspired colleagues in North America.

In the 1990s, new research interests in the social dimensions of IS emerged. These were directed to the relationships among IS development, uses, and resultant social and organizational changes. The new stream of research has offered fresh insights into the emerging role of ICT within differing organizational contexts (e.g., Kling and Scacchi 1982; Orlikowski 1992; Walsham 1993; Hirschheim et al. 1996). Drawing directly on sociological theories of institutions, this wave of sociotechnical research has informed, if not directly shaped, IS scholarship (Avgerou 2002). The sociological theories leveraged by the new stream of sociotechnical research had flourished in parallel with the early sociotechnical approaches, while they similarly dispensed with technological determinism. Even though not explicitly using the term “sociotechnical,” these sociological theories offered a solid basis upon which emerging sociotechnical research built. In the following section, we discuss institutional theories, structuration theory, social network perspective, and social philosophy that proved to be instrumental in the creation of this scholarly space.

5.2.2.1 Institutional Theories

Institutional theories in organization studies emerged as a counterpoint to organizational theories that saw people as rational actors. In contrast, institutional theories focused on cultural and normative explanations for organizational phenomena (DiMaggio and Powell 1991). Barley and Tolbert (1997, p. 93) note: “…organizations, and the individuals who populate them, are suspended in a web of values, norms, rules, beliefs, and taken-for-granted assumptions, that are at least partially of their own making.”* With this noted, there is a thriving community of sociologists interested in online communities and the nature of social networks (see Wellman et al. 2001 among others).
The institutional perspective is premised on the concept of “institution” that denotes the importance of authoritative, established, and rule-like procedures that provide order in society.

A key aspect of institutions is their interest in continuing to exist. As institutions become taken for granted, people are likely to believe that there is a functional rationale for their existence, and therefore, their validity is not questioned by social actors. By employing the concept of “institution,” new institutional theorists build a conceptual basis for delineating contextual influences and the broader influences of organizations’ social environments.

From an institutional perspective, ICT is viewed not as a set of material features functioning according to the functional rules that are inscribed into their physical components but as a product of embeddedness into social institutions (Avgerou 2002). In this way, ICT can be considered as an institution in its own right, one that interacts with other institutions in modern society. As an institution, ICT can be characterized as emergent, embedded, evolving, fragmented, and connected to an ephemeral social presence that is shaped as much by other institutional and contextual forces as by technical and economic rationales (Orlikowski and Barley 2001). Examining the interactions of ICT with other institutions, Swanson and Ramiller (1997) conclude that institutional forces are significant in shaping the perception about the organizational potentials of ICT. Avgerou (2000), building from the institutional perspective, captures the process of IT-enabled organizational change with both the ICT innovation and the organizational practices considered to be institutions, each having its own mechanisms and legitimating elements. In this way, the interaction between these two types of institutions is theorized as the dual processes of institutionalization of IT and deinstitutionalization of established organizational structures and practices.

While institutional theory provides a powerful framework for understanding the context of organizational change, its pillars rest upon the assumptions of stability, persistence, and the limited scope for change. By overstressing stability and the robustness of institutions, this often underestimates the role of human agency and ignores their potentials in transforming institutional patterns (Barley and Tolbert 1997; Dacin et al. 2002). By the same token, ICT artifacts also retreat to a secondary position in institutional analyses. In fact, the institutional perspective does not inquire into the nature of the technological artifact and does not address whether IT itself can represent any material influences independent of institutional forces.

5.2.2.2 Structuration

Many scholars have theorized about the mutual constitutions of individuals and society (e.g., Bourdieu 1977; Urry 1982; Bhaskar 1998); however, it was the work of Anthony Giddens that introduced the concept of structuration to a wide range of social sciences (Bryant et al. 2001, p. 43). Through the concept of structuration, Giddens (1986) rejects the traditional characterizations of social phenomena as determined by either objective social structures or totally autonomous human agents. In his view, social phenomena are neither structure nor agency but are continuously constituted in their duality. Giddens adopts an unconventional definition of structure as “rules and resources, organized as properties of social systems” that exists only as structural properties (Giddens 1989, p. 258). Human agents draw on social structures in their actions, and at the same time, these actions produce or reproduce social structures. In this sense, action and structures are in a recursive relationship, and this is the meaning imparted by the term “structuration.”

Structuration’s dynamic conception of structure, as being recurrently produced and reproduced through situated interactions of people, facilitates studying technological change (Orlikowski 2000). The fundamental duality of actions and structures as featured in the theory helped IS researchers to break away from both technological and social determinism (Markus and Robey 1988). Early champions of structuration theory in IS research employed the theory to link the context and process of change, examining the ways ICT contributes to the structuring of organizations (Orlikowski and Robey 1991; Walsham and Han 1991; Orlikowski 1992). DeSanctis and Poole (1994) developed an IS-specific version of the theory called Adaptive Structuration Theory (AST). AST focuses on (1) structures that
are embedded in the technologies and (2) structures that emerge as human actors interact with those technologies. Scholars have noted the inconsistency of AST as: Giddens theorized that structure cannot be inscribed or embedded in technology since they do not exist separately from the practices of social actors (Jones 1999).

Rejecting the hypothesis of structure as embedded in technology, subsequent interpretations of structuration theory in IS gave more weight to agency, focusing attention on improvisation, enactment, and the emergent nature of ICT-enabled organizational practices (Orlikowski 1996; Orlikowski and Hoffman 1997; Weick 1998). The shift from technology as an embedded structure toward agency of humans underpins the practice lens (Orlikowski 2000; Schultze and Orlikowski 2004). She proposes the notion of technology-in-practice, which refers to the structure of technology use enacted by social actors while they interact recurrently with a particular technology artifact. Seen this way, technology-in-practice is emergent and enacted, not embodied or appropriated.

Despite its potential for explaining the social processes through which ICT and organizations interconnect, structuration theory has limitations for empirical IS research. For instance, Giddens makes almost no references to IS or ICT in his writings (Jones and Karsten 2008). In structurational analyses, technologies can have a material influence on human actions, but the effects are contingent upon how social actors engage with them through their practices. Thus, “... as they do things in relation to machines and so forth, these are the stuff out of which structural properties are constructed” (Giddens and Pierson 1998, p. 83). What this “relation to machines” might be, and how it affects social actors’ practices, however, is not elaborated in structuration theory, and analysis of these properties remains largely underdeveloped (Jones and Orlikowski 2007). Moreover, structuration theory deals with social phenomena at a high level of abstraction. This leads to it being seen as a “metatheory”: a way of thinking about the world, rather than an empirically testable explanation of organizational practices.

5.2.2.3 Social Network/Structure

The social network perspective first blossomed in the 1920s at Harvard University’s Department of Sociology. Since then this approach has been taken up and advanced by scholars in sociology, anthropology, psychology, and organization studies, to name a few (Scott 2000). In organization studies, scholars have explored different elements of social networks relative to embeddedness of organizational routines, informal information sharing, holes and bridges in knowledge flow, and the transfer of social norms and tacit knowledge (e.g., Merton 1957; Granovetter 1973; Wellman and Berkowitz 1988; Burt 1992). In IS, social network concepts have been used to study the behaviors of teams, organizations, industries, and ICT-enabled communities (Nohria and Eccles 2000; Barabasi 2003; Monge and Contractor 2003; Christakis and Fowler 2009).

The social network perspective is useful for studying some of the emerging forms of social or organizational arrangements and the roles of ICT (and more recently, social media). A social network is a social structure made up of individuals called “nodes” who are “connected” by an interdependency like friendship, kinship, common interest, financial exchange, and knowledge or prestige. Networks of relations are enacted by sharing of information or resources among nodes (people) via ties between them (their interdependency). These simple concepts continue to offer scholars “...a surprisingly fruitful way to analyze how social formations organize, change, and grow” (Oinas-Kukkonen et al. 2010, p. 62).

Concepts of network analysis such as social capital (as resources derived from networks of relationships) provide a vehicle for examining digitally enabled social networks. For example, Robert et al. (2008) use social capital as the lens to study the differences between lean digital networks and face-to-face interactions. In addition, via emerging computational capabilities, researchers are also enabled to conduct complex network analysis such as ICTs (such as social media) that can enhance interactions across social networks (Agarwal et al. 2008). In this regard, building from the theory and methods of social network analysis, Kane and Alavi (2008) studied how multiple users interact with multiple ICTs within healthcare groups.
5.2.2.4 Social Philosophy

Scholars in IS have drawn on social philosophers to gain insight into contemporary and complicated dimensions of IS design, management, and theory. These dimensions include but are not limited to politics, power, cognition, and rationality of IS (Fitzgerald 1997). The philosophy-oriented conceptual thinking came about in part as a challenge to the conventions of systems rationalism that pervaded much of the early approaches to studying IS. This work also provided a more conceptually nuanced view of the world, shifting attentions from systems and technology to the interplay of people and their complex universe.

Most notably, IS researchers have levered philosophical approaches with a significant input from critical social theorists to address IS sociotechnical problems. Arguably, critical social theory in these studies is mostly rooted in the work of Jurgen Habermas and Michel Foucault. These critical social theorists posit that social structures are not independent of people: they are produced and reproduced by them. And people's ability to transform their social and economic circumstances is constrained by multiple cultural, social, and political forces. To this end, critical research seeks to outline the restrictive dimensions of the status quo and carry forward an emancipatory agenda by focusing on conflicts and contradictions in contemporary society (Myers 1997).

Other IS researchers have drawn on critical social theories to study freedom, social control, and power with regard to the development, use, and role of IT in organizations and society at large. Critical social theory has allowed these researchers to account for ethical and moral aspects of IS, by focusing on emancipatory approaches and the betterment of people's lives (Ngwenyama and Lee 1997). Critical approaches critique taken-for-granted assumptions, directing attention to the potentials of people in changing their social and material circumstances. germane to this view is the thesis that people who interact with IS need not be constrained by their social circumstances (Orlikowski and Baroudi 1991). As an example, Hirschheim and Klein (1994) applied critical social theory to study IS development. Their critical approach discards oversimplistic notion of users and the dynamics of context by paying attention to how different user groups are affected by system development and may react to it. It also explicates how the system may fit into organizational context and how other organizational dynamics such as power and politics come into play.

While sharing some of the same philosophical roots, recent sociotechnical scholarship has shifted focus from railing against prescriptive IS development methodologies toward a broader view on the roles of ICT in contemporary organizations. In particular, the new sociotechnical approach that emerged in the 1990s is strongly inspired by the broader stock of social science theory (i.e., theories from science and technology studies [STS]) in order to address the multiple substantive issues that are associated with ICT (Dunlop and Kling 1991). These theoretical insights are critical in contrast to the classic sociotechnical approaches that had some distinctive “blind spots” in dealing with rapidly changing contingencies of workplaces and malleable technologies that lend themselves to user improvisation (Malone et al. 1995; Ciborra and Lanzarra 1999).

5.2.3 Science and Technology Studies

Scholars in the intellectual community known as STS* are concerned with the reciprocal relationships among social, political, and cultural structures, science/scientific research, and technological innovation. Scholars of STS bring a broad range of perspectives to focus on the relationships among technology and society. So, historians, communications, sociology, computer science, political science/policy studies, and information studies scholars are found in central roles in STS.

Given the variety of models, conceptual frameworks, and domains of study, there is no agreed upon definition of what constitutes or qualifies as studies of technology within STS (Van House 2003).

* For more about the STS community, see Hackett et al. (2008) and http://www.4sonline.org
This intellectual ambiguity serves STS well as it makes the community open to exploring new technologies. And, by the 1980s, technology studies began to proliferate in STS. Two seminal works on social shaping of technology (SST) (MacKenzie and Wajcman 1985) and the social construction of technological systems (Pinch and Bijker 1987) signaled what Steve Woolgar was to call the “turn to technology” (Woolgar 1991).

Despite its ontological and epistemological heterogeneity, STS scholars pursue common themes. Virtually, all STS researchers are united in their aim to dispense with the predominance of technological determinism. They believe that the simplicity offered by such a perspective fails to recognize the dynamic and complex process through which technologies interact with society (Bijker 1995; Latour 2005). STS researchers also unanimously argue that the “black box of technology” should be opened up for sociological analysis (Law and Bijker 2000). To do so, researchers must pay attention to the process and content of technology itself. Shifting away from “the impact” of technology, this body of research tends to highlight how technology is constructed during research, development, and innovation phases and how structural and political circumstances of its development are reflected in technology. Over time, STS scholars have embraced several theoretical approaches. Three of the most prominent are the social construction of technology (SCOT), focusing on constructs like interpretive flexibility and relevant actors; the SST drawing on concepts like configuration and trajectories; and actor–network theory (ANT) that introduces networks, enrollment, translation, and irreversibility.

5.2.3.1 Social Construction of Technology and Social Shaping of Technology

As the name implies, SCOT conceptualizes technology as not determining human action: humans socially construct technology (Bijker 1997). Social constructionists, the advocates of SCOT, downplay self-evident explanations of effects stemming from the material attributes of a technology: constraining and enabling effects of technologies are matters of interpretative practices of people in the social context. The process through which technology is constructed is described through a number of stages. The first stage involves the concept of interpretive flexibility to explain how a technology is socially constructed. The second stage explains how technology reaches stabilization, a state where the “relevant social groups” have their problems resolved and desires manifested in the artifact. In the final stage, the technological content of the artifact is linked to the social, through considering the meanings that are assigned to the artifact by the relevant social groups: it comes to “closure.”

The conceptual pillars of SCOT are found in a number of IS studies. One example is Orlikowski and Gash’s (1994) study of people’s interpretation of Lotus Notes. Building on Bijker’s (1987) conception of “technological frames,” their study stressed the specific uses to which the technology is put in a given setting and how the context of use influences the users’ interaction with the IS. The lack of uniformity among the technological frames of disparate social groups is also attributed to the fact that “technologies are social artifacts, their material form and function will embody their sponsors’ and developers’ objectives, values and interests, and knowledge of that technology” (Orlikowski and Gash 1994).

Some scholars see SCOT’s notion of closure as privileging design over use as this diminishes the recurrent reinterpretations of technological artifacts by different groups of users (Wajcman 2000). In response, STS scholars advanced the SST perspective. The SST perspective shares many commonalities with SCOT but avoids the problems that lead SCOT theorists to implicitly assume that technological structures will become something external to human actions during use. This noted, early SST work was rebutted for giving undue attentions to technology developers and technology design (Russell 1986).

Through a number of revisions, SST researchers (notably Russell and Williams 2002) fine-tuned their theorization to open up the concept of design and development, portraying technology development as an open and indeterminate activity, through concepts like “innofusion” and “configuration.” Innofusion is the process through which innovation extends to implementation, consumption, and use (Fleck 1988). The technological artifact emerges and remerges “through a complex process of action and interaction between heterogeneous players”—what Fleck calls “learning by trying” (Fleck 1994). Along the same line, “configuration” advances the notion of open design and implementation,
by appealing to technology in cases where a constellation of heterogeneous components is locally incorporated into some kind of working orders. In this sense, technology developers only prefigure their products, which later become subject to various reconfigurations in the local site of use (Williams 2000).

The “strong constructivism” that underpins both SCOT and SST however, can lead analysts to discount any trace of, or role for, technological agency. Hutchby (2001, p. 450) argues strong constructivist approaches showcase “… humans are capable of interpreting the capacities of technologies [such as a bridge or an airplane] in varying ways.” But strong constructivists do not address the central question of “… does the aeroplane lend itself to the same set of possible interpretations as the bridge; and if not, why not?” (Hutchby 2001, p. 447).

5.2.3.2 Actor–Network Theory

In contesting technological determinism, both SCOT and SST have been accused of falling into a form of social determinism: overstressing social choice at the expense of technological considerations. By contrast, ANT seeks to avoid determinism. While ANT shares with social constructivists the central premise that social structures and practices cannot be realized solely through an account of the material properties of technologies, ANT distances itself from social determinism by making no analytical distinction between the social and technical (Latour 1987, 1999). Rooted in a “… ruthless application of semiotics” (Latour 1999, p. 3), ANT’s first premise is that entities have no inherent qualities: they acquire their form and functionality only through their relations with other entities.*

The second premise of ANT is “symmetry” among humans and technological artifacts, arguing against any a priori distinction between what is technical and what is not (Bloomfield and Vurdubakis 1997). As Latour (1991, p. 129) maintains: “… rather than assuming that we are dealing with two separate, but related, ontological domains—technology and organizations—we propose to regard them as but phases of the same essential action.” Building from the concept of symmetry, both technological and social entities are explained as “actants” (Akrich 1992).

An actor–network is constructed through the enrollment of actants (both human and nonhuman actants) into a network of relations by means of negotiations. This process is explicated by the “sociology of translation” that aims to describe, rather than explain, the transitions and negations that take place as the network is configured or “translated” (Callon 1986). The translation process is political in nature and begins with a certain “problematization” when one actor identifies a problem that is shared by others and starts to convince other actors that the problem is significant enough to dedicate resources for its solutions.

Actor–networks reach stability when they become irreversible. Irreversibility is when it would be either too costly to reverse the relationships or doing so becomes improbable. Reaching network stability requires (1) successfully negotiating the enrollment of participants, followed by the (2) translation of an (3) obligatory passage point (when the sets of relations and those enrolled become (4) irreversible) (Latour 1987). Mobilization of network members ensues as a result of irreversibility and stability where social investment in the network reaches a point at which withdrawal would be unthinkable. The durability of a network is a matter of the robustness of the translation. Networks collapse or undergo changes if the translation processes that brought the networks to their current state can revert or if the networks cannot resist alternative translations.

To date, ANT’s conceptual vocabulary and methodological demands have been used eclectically in IS research (Walsham 1997; e.g., Pouloudi and Whitley 2000). Numerous case studies inspired by ANT serve as a means to improve the understanding of IS researchers of the design and use of ICT, which is of

* One implication of this relational premise is that concepts of context cannot be distinct from an actor–network—what one might characterize as “context” or “aspects of the situation” matter in ANT only if there is a relationship developed among entities of interest. That is, ANT is neither contextual nor a-contextual: the actor–network is both local and distant and the relationships between entities of interest, action, and location are the focus.
significance for IS (Hanseth et al. 2004). And there exists a prominent and meticulous adoption of ANT in the literature on information infrastructure. The size and complexity of infrastructural technologies such as groupware, and the characteristic that they generally build upon existing technologies, make researchers direct their focus from ICT or isolated technological artifacts to a more complex notion of IT infrastructure (Hanseth et al. 1996). Several researchers have drawn upon ANT to account for the sociotechnical nature of the information infrastructure, which includes not only artifact but also human habits, norms, and roles that may prove its most intractable elements (Jackson et al. 2007). For example, building on ANT’s conceptual vocabulary, Hanseth et al. (1996) investigate how any given elements of information infrastructure constrain others and how these elements inscribe certain patterns of use. To do so, they identify explicit anticipations of use by various actors during use and the way these anticipations are translated and inscribed into standards.

5.3 Contemporary Sociotechnical Theories

There has been, over the past 15 years, substantial sociotechnical theorizing. Many of these contemporary approaches to sociotechnical theorizing draw together concepts from several of these sociotechnical sources and combine both empirical and theoretical works to advance sociotechnical thinking, as we outline later.

5.3.1 Genres

The concept of “genre of organizational communication” was introduced to examine organizational communication with a particular focus on the mediating role of communicative technologies. Rooted in ancient Greek word, genos, genre denotes races, kinds, and classes (Zimmerman 1994). The academic use perhaps dates back to the 1950s and these early formulations were mostly taxonomy oriented, seeking to classify the form and content of written and spoken communicative actions. Contemporary efforts have shifted toward the classification of communicative or rhetorical practices (Østerlund 2007).

Yates and Orlikowski (1992), building on Millers (1984), define a genre as “…a typified communicative action invoked in response to a recurrent situation” (p. 301). The recurrent situation encompasses the history and nature of established practices, social relations, and communication media within organizations. In this view, genres are meaningless without the daily practices into which they are situated. Central to this theorization of genres is a focus on community. That is, the communicative purpose of a genre has to be shared within a community (i.e., organization) by more than one person.

The structural features, communicative technologies, and symbol systems of a genre are all made sense of within the community (Yates and Orlikowski 1992). For example, an e-mail is not an instance of communicative genres, while a memo or a meeting agenda, which may be mediated by the use of e-mail, is (Päivärinta 2001). With this distinction, genre theory dispenses with information richness theory, which defines a medium rich or lean due to its intrinsic characteristics. Based on genre theory, the same communicative medium can convey messages using different genres, just as the same genre can ensue using different communicative media. For instance, e-mail can carry messages in the form of business letter or informal personal notes that are essentially considered disparate forms of genres (Lee 1994). Genres are dynamic: introducing and using a new medium may transform daily practices and changing communication practices. For example, Davidson (2000) examined how computerized clinical order system changed interactions among multiple groups of organizational actors (e.g., physicians, nurses, and pharmacists).

5.3.2 Boundary Objects

A boundary object is something that is simultaneously “rigid” enough to be commonly understood among different social worlds and “plastic” enough to be understood within each social world (Star 1989;
5.3.3 Biographies of Artifacts

The biographies of artifacts (BoA) approach has emerged from the work of a small group of scholars at Edinburgh University (Pollock et al. 2003). Building on the series of deep studies of various broad-scale commercial technologies, the BoA conceptualization is that an ICT or an IS often exists at one or more places (installed in more than one location) and varies by both the version (temporal) and the location (spatial). To understand and study such diverse, distributed, and popular (or common) IS requires one to pursue a biographical approach to analysis, one that focuses on the evolution of the particular artifact over time, its changes and evolution based on uses and events at various sites, and the players in these various arenas (Pollock et al. 2003). Building, as it does, from the SST tradition and from cultural studies (where the BoA concept first emerged), BoA provides a framework to approach large-scale technological analysis. Its emphasis on trajectories and social shaping, and the demands of maintaining a dual focus—on both common events and unique events, as both can shape the direction of the artifact’s evolution—make it a demanding approach at present (e.g., Pollock and Williams 2009).

5.3.4 Domestication

The domestication of ICTs is premised on the processes of consumption and focuses on the ways in which a new artifact, concept, or object of interest is brought into an existing social world (Berker et al. 2006). Consumption is more than use as it encompasses the mutual adaptations of social structures, processes, and meanings as people bring the object of interest into their world and learn to live with it (or not). Much of the original domestication scholarship focused on the take-up and uses of the media and digital technologies in the home (Silverstone and Haddon 1996). Domestication scholars broadened their focus of inquiry and the conceptual approach soon could be found in IS (e.g., Frissen 2000).

Domestication focuses attention to the ongoing and mutually adaptive processes of bringing ICTs into existing social worlds (often the home or people’s lives). Domestication scholars see ICTs as arriving with preformed meanings constructed by advertising, design features, and both informal discourse (e.g., word-of-mouth and personal networks) and formal media messages. Once acquired individuals invest the ICT with their own significance, create and adapt strategies to manage, use, and value these, and deal with the changes their presence, uses, and meanings entail (e.g., Stewart 2003). Haddon (2006) makes clear domestication focus on consumption, rather than use, highlights processes of negotiation in bringing ICT into the social world. This process of making something (like a commodity technology or a particular artifact) personal is a “taming” or training that takes place over time. This may not lead to success (or a desired outcome) and domestication scholarship often highlights the churning or seemingly cyclical patterns of nonprogress toward full acceptance/belonging. In focusing on this process, domestication emphasizes the relationships among the object, individuals, and the larger social milieu in which this process unfolds (and often grants agency to the media messages and opinion leaders for framing the roles, uses, and expectations of ICT).

5.3.5 Computerization Movements

The computerization movements approach extends concepts of social movements in two ways. A social movement, broadly defined, is coordinated collective action that relies on informal social units to
pursue institution building toward shared goals. These goals can either be aimed at a specific and narrow policy or be more broadly aimed at cultural change. Often this institution building creates conflict with existing institutions. Institution building requires leaders, visions, resources, followers, and events. Adapting this broad area of sociological inquiry, Kling and Iacono (1988) articulated a computerization movement as a specific form of social movement, one focused on institutionalizing a particular ICT or IS. Moreover, a computerization movement emphasizes the public discourses around a new ICT, the ways in which various adherents and opponents frame the computerization efforts, and the practices through which these frames and discourses unfold. Elliott and Kraemer (2008) compiled a volume of computerization studies as a tribute to the late Rob Kling. Hara and Rosenbaum (2008) have extended computerization movements, developing a typology based on an empirical analysis of published work in this area.

5.3.6 Sociomateriality

Derived in part from the sociology of science, sociomateriality posits social practices as intrinsically conjoined with material things—and for our interests, this tends to focus on the material aspects of ICT and IS (Orlikowski and Scott 2008). Sociomateriality does not assign agency to people or technology but views the social and technological to be ontologically inseparable (Suchman 2007). It hence provides a means for understanding how social meanings and technological actions are inextricably related and, together, shape social practices.

The sociomaterial perspective considers knowledge to be enacted—every day and over time—in and through people’s practices. Practices are “… recurrent, materially bounded and situated action engaged in by members of a community” (Orlikowski 2002, p. 256). Sociomaterial scholars treat knowledge and practice as mutually constitutive: knowing is inseparable from knowledge practices and is constituted through those actions. Central to this view is the thesis that technological affordances are achieved in practice and can only be understood by focusing on their material performance that is always enacted by humans. In this way, the performativity of ICT and IS is not given a priori; they are temporally emergent and enacted (Orlikowski and Scott 2008).

5.3.7 Social Informatics, Social Actors, and Sociotechnical Interaction Networks

Inspired by constructivist approaches to studying technology found in STS and sociology, social informatics (SI) is particularly concerned with computerization movements: The transformation of human social arrangements and activities that follows from the implementation, use, and adoption of computers in different types of organizations and social systems (Horton et al. 2005). SI is a perspective, a way of framing, the particular dynamics of IS and ICT in social and organizational worlds. SI scholars seek to theorize ICT and IS as evolving crystallizations of interests, activities, structures, and artifacts that are constructed over time in response to local and institutional conditions (Davenport 2008).

SI scholarship arose in response to the research in computer science’s failure to adequately explain or even examine the changes in social structures and organizational processes that arise as new ICT and IS are taken up and used. Kling (2007) notes that SI is “a body of research that examines the social aspects of computerization”. A more formal definition is “the interdisciplinary study of the design(s), uses, and consequences of information technology that takes into account their interaction with institutional and cultural contexts.”

Kling is recognized as the foremost proponent of SI during his lifetime (Day 2007) and hailed as the man who “brought computing and sociology together” (Wellman and Hiltz 2004). Kling, as a prominent member of a research group at the University of California, Irvine, began to explore IS in local government across the United States in the early 1970s. Soon, Kling and Scacchi (1982) developed an explanatory framework, “the web of computing,” in which they asserted that organizational computing

© 2014 by Taylor & Francis Group, LLC
must be viewed as an ensemble of equipment, applications, and techniques with identifiable information processing capabilities. This ensemble or web stands as an alternative to “engineering models” that focused on the technological equipment and their information processing capabilities.

As part of the perspective, SI scholars have advanced a set of findings: insights drawn from many studies that, together, can be taken as common or expected outcomes from any computerization effort (see Kling 1996; Kling et al. 2005). First, the uses of any ICT lead to multiple and sometimes paradoxical effects. Second, the uses of ICT shape thought and action in ways that benefit some groups more than others. The design, development, and uses of ICT will reshape access in unequal and often ill-considered ways. Third, the differential effects of the design, implementation, and uses of ICT often have moral and ethical consequences. This finding is so often (re)discovered in studies across the entire spectrum of ICT, and across various levels of analysis, that ignorance of this point borders on professional naiveté. Fourth, the design, implementation, and uses of ICT have reciprocal relationships with the larger social context: it is not possible to isolate an ICT or its effects. Finally, effects of ICT will vary by the level of analysis, making it appear as if there are different phenomena at work across these levels.

Two characteristics of SI distinguish it from the broader sociotechnical research literature. First, SI provides an intellectual framework that can guide methodological practices of IS researchers, one focusing specifically on ICT (and not more generically on “technology”). In the “web of computing” paper (Kling and Scacchi 1982) and later work, Kling (1987) presented IS researchers with a methodological guide for studying institutional uses of ICTs with a focus on the institutional level. A second differentiating characteristic of SI is the greater level of agency provided to the ICT and IS. This stands in contrast to the more common strong constructivism found in SST and SCOT, where technical capacities are not fixed but essentially indeterminate and open to interpretive flexibility (for an overview of this debate, see Grint and Woolgar 1992; Kling 1992a,b).

The social aspects of the web of computing were advanced by Lamb and Kling (2003). They emphasized that the focus on workers and others as users diminished their larger and more complex roles as “social actors” and that only a portion (and often a remarkably small portion) of one’s work is as a user. The social actor model further articulated several important social relations relative to the ways in which ICT and IS are taken up and brought into the social worlds of these actors (e.g., Rowlands 2009).

Several SI scholars have also extended the web of computing model, advancing sociotechnical interaction networks (STIN) as a more fully developed version (Kling et al. 2003). Inspired by the symmetrical treatment of humans and nonhumans in ANT, Kling defines STIN as a network that “includes people (also organizations), equipment, data, diverse resources (money, skill, and status), documents and messages, legal arrangements and enforcement mechanisms, and resource flows” (Kling et al. 2003, p. 48). STIN distinguishes itself from ANT’s conceptual and abstract vocabulary by providing a methodological heuristic for identifying the network’s members and boundaries (e.g., Meyer 2006).

5.4 Emerging Scholarly Spaces

Beyond the substantial intellectual activity surrounding the development and conceptual advances in contemporary sociotechnical theorizing as described in Section 5.3, we provide an overview of two emerging scholarly spaces—multidimensional networks and economic sociology—whose members are focusing on the roles of ICT and are reaching out to sociotechnical scholars for guidance. The first space reflects a subcommunity of social network scholars who are grappling with the empirical and conceptual issues of various ICTs being involved in or interacting with people’s social networks. The second space is a distinct intellectual subcommunity that is generating attention in both economics and sociology.

5.4.1 Multidimensional Networks

Many scholars are drawing on concepts from social networks to study the roles and effects of ICTs in social and organizational life. Relative to this, two major views coexist. In the first view, ICT is
considered an exogenous variable that can shape social networks. For example, the work of scholars like Barry Wellman and colleagues has investigated how ICTs can substitute for communication networks and how it can reconfigure these human-centric relationships (i.e., Wellman and Gulia 1999; Wellman 2001; Wellman and Haythornthwaite 2002).

Recently, a second view on the role of ICTs in social networks is emerging. This view rejects any separation between ICT and the network, treating ICT as an endogenous variable (e.g., Monge and Contractor 2003). These scholars advance the concept of a multidimensional network to help researchers capture the entangled and multifaceted relationships between individuals and technologies. By definition, multidimensional network is both multimodal and multiplex. Multimodal networks contain nodes of different types, and multiplex networks are comprised of multiple types of relationships among nodes (Contractor et al. 2011). These simple concepts help sociotechnical researchers focus on the structure and dynamics of networks involving different types of players (people and technology) and different types of relations among multiple people and technologies.

5.4.2 Economic Sociology

Economic sociology has emerged in the past 20 years as an intellectual community that focuses attention to the socially embedded nature of economic activity (see Swedberg 1994). Social embeddedness is at the core of economics sociology and has three characteristics. First, an economic transaction is done by and for people. As such, this transaction reflects sociality in the ways it is conducted, in the sets of assumptions regarding the behaviors of the participants (and the behaviors of the nonparticipants), and the roles that these transactions play in the larger social world (their structuring potential). A second characteristic is that the motives of the participants are influenced by their social relations, norms, and structures: participants are social agents (e.g., Swedberg and Granovetter 2001). In this rejection of “homo-economicus,” economic sociologists go beyond Simon’s concepts of satisficing and reflect the fundamentals of bias, anchoring, and attention to social activity that Tversky and Kahneman (1974) theorized on in their Nobel-winning prospect theory. The third characteristic of economic sociology is the importance of institutions and their construction as sets of shared interests and social relations that are so important to the structuring of society that these interests and relations are often encoded as laws and regulating social norms (e.g., Rauch and Casella 2001).

The empirical and conceptual premise of economic sociology is being advanced by economists, sociologists, and political scientists. However, they have, collectively, done little to conceptualize the roles or effects of ICT. That is, the roles of ICT as both a participant in economic life and social life, and the potential effects of the presence and uses of ICT on social relations and social structure, remain anomalous. With this noted, there has been some recent work to advance the role of technology (more broadly) in economic life by building on the flexible conceptualizations of technological materiality (e.g., Pinch and Swedberg 2008).

5.5 Conceptualizing the ICT Artifact

We began this chapter by noting that IS scholarship focuses on the relationships among ICT and organizational actions, processes, structures, and changes (Leavitt and Whisler 1958; Markus and Robey 1988; Benbasat and Zmud 2003; Sidorova et al. 2008). As these scholars and others have noted, conceptualizing the ICT artifact, IS more broadly, and their effects remains both a core mission and a difficult task for IS

* This discourse has similarities with the sociomateriality discussion (Section 5.3.5). The most distinctive difference between the two is the explicit embedding of a technological artifact into a network of social relationships that multimodal networks demand. Concepts of networks and embedding may also hearken ANT. But the multimodal conceptualizations are not premised on the conceptual foundations of symmetry, enrolment, negotiation, translation, and irreversibility on which ANT relies.
sociotechnical approaches provide a range of conceptualizations: the strong social constructionism of SCOT, the more limited social constructionism of SST, the conceptual symmetry of ANT, and the weaker constructionism of STIN and sociomateriality. Relative to technological agency, sociotechnical approaches from this are mutually interdependent with social and organizational aspects of the situated phenomena. This provides a useful alternative to both the standard models of IS and other emerg- ing approaches seen in IS.

Over the past decade, scholars have begun advancing design science and design theory as another approach to IS research (e.g., Gregor 2002; Pries-Heje and Baskerville 2008). Given the design focus and interventionist orientation of the Tavistock traditions of sociotechnical research, it may be that design research is one vehicle for sociotechnical scholars to pursue (e.g., Markus et al. 2002; Baskerville and Pries-Heje 2010). More generally, given the broad scope of IS scholar’s research interests and the equally broad range of conceptual approaches taken, the sociotechnical perspective provides a set of conceptual tools and empirical insights to advance the state of IS research (King 2011; Sawyer and Winter 2011). That is, sociotechnical approaches to studying ICT and IS provide useful intellectual guidance to advance our theorizing on technological artifacts and how people’s work practices and organizational arrangements are afforded by technological resources and inhibited by technological constraints.

Acknowledgments

Thanks to Brian Butler, Sean Goggins, and Heikki Topi for their comments on earlier versions of this chapter. Thanks to students of the Syracuse iSchool’s “sociotech reading group,” and particularly Gabe Mugar, Matt Willis, Andreas Kuehn, and Janet Marsden, for comments and questions on formative parts of the work presented here.

References

Sociotechnical Approaches to the Study of Information Systems

