The amino acids included in this list are those that have been incorporated into biologically active peptides, e.g., angiotensin II, to study structure-activity relationships. Most of these amino acids are synthetic and are either available commercially or have been synthesized by various investigators as structural variants of naturally occurring amino acids. However, a few of these are also naturally occurring. The selection here is of those most widely used and whose representation by symbols in peptide sequences has caused problems for authors and editors. The symbols listed are those considered most in keeping with the system originated by the IUPAC-IUB Commission on Biochemical Nomenclature. The list may also be useful in selecting suitable isosteres of natural amino acids. The bibliography may be helpful in synthesis, resolution, or studies of the effects of these substances on the biological activity of various peptides.

The following trivial names are listed under other names (given by the number of the entry): N-amidinoglycine (67), 6-aminocapric acid (18), 2-aminoethanesulfonic acid (112), β,β-bis(trifluoromethyl)alanine (70), carboxamoylglycine (73), 2-(2-carboxyhydrizinopropyl)propane (83), cycloleucine (15), diethylalanine (17), dihydrophenylalanine (46), dopa (57), glycocyamine (67), isovaline (52), β-lysine (52), mercaptovaline (60), α-methylalanine (21), penicillamine (60), 5-pyrrolidone-2-carboxylic acid (109), surinamine (94), tetrahydrophenylalanine (47), trimethylammoniocaproic acid (116).
STRUCTURE AND SYMBOLS FOR SYNTHETIC AMINO ACIDS INCORPORATED INTO SYNTHETIC POLYPEPTIDES (Continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Structure</th>
<th>Name/Reference</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\text{H}_2\text{C}=$\text{(NHCOCH}_3\text{)}\text{COOH}$</td>
<td>2-Acetamidoacrylic acid</td>
<td>AcAacr</td>
</tr>
<tr>
<td>2</td>
<td>$\text{HN}(\text{CH}_3)_2\text{CH(NHCOCH}_3\text{)}\text{CONHCH}_3$</td>
<td>N^α-Acetyl-2-fluorophenylalanine</td>
<td>$\text{AcPhe}(2\text{F})$</td>
</tr>
<tr>
<td>3</td>
<td>$\text{H}_2\text{N(CH})_2\text{CH(NHCOCH}_3\text{)}\text{COOH}$</td>
<td>N^α-Acetyllysine-N^α-methylamide</td>
<td>Ac-Lys-NHMe</td>
</tr>
<tr>
<td>4</td>
<td>$\text{CH}_2\text{CH}_2\text{CH(NH}_3\text{)}\text{COOH}$</td>
<td>β-Aminoacid</td>
<td>βAaaL</td>
</tr>
<tr>
<td>5</td>
<td>$\text{HOOC(CH}_3\text{)}\text{CH(NH}_3\text{)}\text{COOH}$</td>
<td>β-Aminoisobutyric acid</td>
<td>γAbu</td>
</tr>
<tr>
<td>6</td>
<td>$\text{CH}_2\text{CH}_2\text{CH(NH}_3\text{)}\text{COOH}$</td>
<td>β-Aminocrotoic acid</td>
<td>αAcrt</td>
</tr>
<tr>
<td>7</td>
<td>$\text{CH}_2\text{CH}_2\text{CH(NH}_3\text{)}\text{COOH}$</td>
<td>β-Aminobutyric acid</td>
<td>αAbu</td>
</tr>
<tr>
<td>8</td>
<td>$\text{N}(\text{CH}_3)_2\text{COOH}$</td>
<td>α-Aminobutyric acid</td>
<td>αAbu</td>
</tr>
<tr>
<td>9</td>
<td>$\text{CH}_2\text{CH}_2\text{CH(NH}_3\text{)}\text{COOH}$</td>
<td>β-Aminocrotoic acid</td>
<td>αAcrt</td>
</tr>
<tr>
<td>10</td>
<td>$\text{CH}_2\text{CH}_2\text{CH(NH}_3\text{)}\text{COOH}$</td>
<td>β-Aminobutyric acid</td>
<td>αAbu</td>
</tr>
<tr>
<td>11</td>
<td>$\text{CH}_2\text{CH}_2\text{CH(NH}_3\text{)}\text{COOH}$</td>
<td>β-Aminocrotoic acid</td>
<td>αAcrt</td>
</tr>
<tr>
<td>12</td>
<td>$\text{H}_2\text{N}(\text{CH}_3)_2\text{COOH}$</td>
<td>β-Aminobutyric acid</td>
<td>αAbu</td>
</tr>
<tr>
<td>13</td>
<td>$\text{CH}_2\text{CH}_2\text{CH(NH}_3\text{)}\text{COOH}$</td>
<td>β-Aminocrotoic acid</td>
<td>αAcrt</td>
</tr>
<tr>
<td>14</td>
<td>$\text{H}_2\text{N}\text{COOH}$</td>
<td>1-Aminocyclohexane-1-carboxylic acid (cyclonoreicine)</td>
<td>$\text{cHxA}(\alpha\text{Cx})$; cNle</td>
</tr>
<tr>
<td>15</td>
<td>$\text{N}(\text{CH}_3)_2\text{COOH}$</td>
<td>1-Aminocyclopentane-1-carboxylic acid (cycroleucine)</td>
<td>$\text{cPeA}(\alpha\text{Cx})$; cLeu</td>
</tr>
<tr>
<td>16</td>
<td>$(\text{CH}_3)_2\text{NCH}_2\text{C}$\text{(CH}_3\text{)}\text{CH(NH}_3\text{)}\text{COOH}$</td>
<td>2-Amino-6-dimethylamino-4-hexynoic acid (1)</td>
<td>$\alpha\text{eA}_{4}\text{hxA}(\text{}\alpha\text{A},N^\alpha\text{Me}_3)$</td>
</tr>
<tr>
<td>17</td>
<td>$\text{CH}_2\text{CH}_2\text{CH(CH}_3\text{)}\text{CH(NH}_3\text{)}\text{COOH}$</td>
<td>2-Amino-3-ethylalareic acid (diethylalanine)</td>
<td>$\text{Ala}(\beta\text{Et})$</td>
</tr>
<tr>
<td>18</td>
<td>H_2N\text{(CH}_3)_2\text{COOH}$</td>
<td>6-Aminohexanoic acid (6-aminocaproic acid)</td>
<td>ϵAha</td>
</tr>
<tr>
<td>19</td>
<td>$(\text{CH}_3)_2\text{CHCH}_2\text{CH(NH}_3\text{)}\text{CH(OH)}\text{CH}_3\text{COOH}$</td>
<td>4-Amino-3-hydroxy-6-methylheptanoic acid (2,3)</td>
<td>$\gamma\text{Ahp}(\beta\text{OH,}\epsilon\text{Me})$</td>
</tr>
<tr>
<td>20</td>
<td>$\text{N}(\text{CH}_3)_2\text{C}$\text{(CH}_3\text{)}\text{CH(NH}_3\text{)}\text{COOH}$</td>
<td>2-Amino-3-[2-imidazolyl]propionic acid</td>
<td>$\text{Apr}(\beta\text{Im}-2)$</td>
</tr>
<tr>
<td>21</td>
<td>$(\text{CH}_3)_2\text{C}$\text{(NH}_3\text{)}\text{COOH}$</td>
<td>2-Aminoisoobutryric acid (α-methylalanine)</td>
<td>$\text{Ala}(\alpha\text{Me})$</td>
</tr>
<tr>
<td>22</td>
<td>$\text{H}_2\text{NCH}_2\text{SO}_3\text{H}$</td>
<td>Aminomethanesulfonic acid</td>
<td>Ams</td>
</tr>
<tr>
<td>23</td>
<td>CH_2NH_2</td>
<td>4-Aminomethylbenzoic acid</td>
<td>$\text{Bz}(\text{4Ame}); \text{Bz}(\text{4CH}_2\text{NH}_3)$</td>
</tr>
<tr>
<td>No.</td>
<td>Structure</td>
<td>Name/Reference</td>
<td>Symbol</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>24</td>
<td>CH<sub>3</sub>CH(CH<sub>3</sub>)CH<sub>2</sub>NH<sub>2</sub>COOH</td>
<td>2-Amino-4-methyl-hexanoic acid (4)</td>
<td>Ahx(gMe)</td>
</tr>
<tr>
<td>25</td>
<td>CH<sub>2</sub>CH=CH(CH<sub>3</sub>)CH<sub>2</sub>NH<sub>2</sub>COOH</td>
<td>2-Amino-4-methyl-4-hexenoic acid (4)</td>
<td>Ahx(Δ<sub>g</sub>, gMe)</td>
</tr>
<tr>
<td>26</td>
<td>CH<sub>2</sub>=C(CH<sub>3</sub>)CH<sub>2</sub>NH<sub>2</sub>COOH</td>
<td>2-Amino-5-methyl-5-hexenoic acid (4)</td>
<td>Ahx(Δ<sub>d</sub>, dMe)</td>
</tr>
<tr>
<td>27</td>
<td>H<sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub>COOH</td>
<td>8-Aminooccanoic acid</td>
<td>αAoc</td>
</tr>
<tr>
<td>28</td>
<td>(4-Amino)phenylalanine (5)</td>
<td>Phe(4NH<sub>3</sub>)</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>3-Amino-4-phenylbutyric acid</td>
<td>βAbu(gPh)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>HOOCCH(NH<sub>2</sub>)(CH<sub>2</sub>)<sub>3</sub>COOH</td>
<td>2-Aminopimelic acid</td>
<td>αApm</td>
</tr>
<tr>
<td>31</td>
<td>N<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>COOH</td>
<td>2-Amino-3-(2-pyridyl)propionic acid</td>
<td>Apr(βPrd-2)</td>
</tr>
<tr>
<td>32</td>
<td>(CH<sub>3</sub>)<sub>3</sub>N(CH<sub>2</sub>)<sub>7</sub>COOH</td>
<td>2-Amino-3-(2-pyrimidyl)propionic acid</td>
<td>Apr(βPyr-2)<sup>c4</sup></td>
</tr>
<tr>
<td>33</td>
<td>NOOCCH<sub>2</sub>CH(NH<sub>2</sub>)CONHCH<sub>3</sub>COOH</td>
<td>3-Aminotyrosine</td>
<td>Tyr(3NH<sub>2</sub>)</td>
</tr>
<tr>
<td>34</td>
<td>N<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NHCH<sub>2</sub>CH(NH<sub>2</sub>)COOH</td>
<td>Aspartic α-methylamide</td>
<td>Asp-NHMe</td>
</tr>
<tr>
<td>35</td>
<td>CH<sub>2</sub>NHCOCH<sub>2</sub>CH(NH<sub>2</sub>)COOH</td>
<td>Aspartic β-methylamide</td>
<td>Asn(Me); Asp(NHMe)</td>
</tr>
<tr>
<td>36</td>
<td>H<sub>2</sub>NCH<sub>2</sub>CH(NH<sub>2</sub>)COOH</td>
<td>Azetidine-2-carboxylic acid</td>
<td>Azt</td>
</tr>
<tr>
<td>37</td>
<td>HOOCCH<sub>2</sub>CH(NH<sub>2</sub>)CONHCH<sub>3</sub></td>
<td>Aziridinecarboxylic acid</td>
<td>Azr</td>
</tr>
<tr>
<td>38</td>
<td>N<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>COOH</td>
<td>Aziridino-n-carboxylic acid (6)</td>
<td>Azro</td>
</tr>
<tr>
<td>39</td>
<td>(PhCH<sub>2</sub>)C(NH<sub>2</sub>)COOH</td>
<td>(α-Benzyl)phenylalanine (7)</td>
<td>Phe(αBzl)</td>
</tr>
<tr>
<td>40</td>
<td>PhCH<sub>2</sub>CH(NH<sub>2</sub>)COOH</td>
<td>3-Benzyltyrosine (8)</td>
<td>Tyr(3Bzl)</td>
</tr>
<tr>
<td>No.</td>
<td>Structure</td>
<td>Name/Reference</td>
<td>Symbol</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>(4-Chloro)phenylalanine (5)</td>
<td>Phe(4Cl)</td>
</tr>
<tr>
<td>43</td>
<td>$H_2NCONH(CH_3)_2CH(NH_2)COOH$</td>
<td>Citrulline<sup>b</sup></td>
<td>Ctr</td>
</tr>
<tr>
<td>44</td>
<td>NCCH$_2$CH(NH$_2$)COOH</td>
<td>β-Cyanalanine</td>
<td>Ala(βCN)</td>
</tr>
<tr>
<td>45</td>
<td>NCCH$_2$CH$_2$NHCCH$_2$COOH</td>
<td>N-(2-Cyanoethyl)glycine</td>
<td>(CNEt)Gly; CNEt-Gly</td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>β-(1,4-Cyclohexadienyl)alanine (9) (dihydrophenylalanine)</td>
<td>Ala(βH$_2$; Phe(H$_2$))</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>β-(Cyclohexyl)alanine (10, 20) (hexahydrophenylalanine)</td>
<td>Ala(βHx; Phe(H$_6$))</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>α-(Cyclohexyl)glycine</td>
<td>Gly(CHx)</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>β-(Cyclopentyl)alanine</td>
<td>Ala(βPe)</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>α-(Cyclopentyl)glycine</td>
<td>Gly(cPe)</td>
</tr>
<tr>
<td>51</td>
<td>$H_2NCH_2CH_2CH(NH_2)COOH$</td>
<td>2,4-Diaminobutyric acid</td>
<td>$\text{A}_2 \text{bu}^c$</td>
</tr>
<tr>
<td>52</td>
<td>$H_2N(CH_2)_3CH(NH_2)CH_2COOH$</td>
<td>3,6-Diaminohexanoic acid (isolysine<sup>b</sup> β-lysine<sup>b</sup>)</td>
<td>$\text{A}_2 \beta$, hxc; βLys</td>
</tr>
<tr>
<td>53</td>
<td>$H_2NCH_2C=CH_2CH(NH_2)COOH$</td>
<td>2,6-Diamino-4-hexynoic acid (11)</td>
<td>$\alpha\text{exh} \Delta \alpha^b$</td>
</tr>
<tr>
<td>54</td>
<td>HOOCCH(NH$_2$)(CH$_2$)$_3$CH(NH$_2$)COOH</td>
<td>2,2'-Diaminopimelic acid</td>
<td>$\text{A}_2 \text{pm}^c$</td>
</tr>
<tr>
<td>55</td>
<td>$H_2NCH_2CH(NH_2)COOH$</td>
<td>2,3-Diaminopropionic acid</td>
<td>$\text{A}_3 \text{pr}^c$</td>
</tr>
</tbody>
</table>
| 56 | ![Structure 56](image) | 3,4-Dihydroxy-(\(\alpha\)-methyl)phenylalanine
β-(3,4-Dihydroxyphenyl)-\(\alpha\)-methylalanine | Dopa(αMe) |
| 57 | ![Structure 57](image) | 3,4-Dihydroxyphenylalanine^b | Dopa^b |
Structural and Symbols for Synthetic Amino Acids Incorporated into Synthetic Polypeptides

<table>
<thead>
<tr>
<th>No.</th>
<th>Structure</th>
<th>Name/Reference</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td></td>
<td>(3,4-Dihydroxyphenyl)serine</td>
<td>Dopa(βHO)</td>
</tr>
<tr>
<td>59</td>
<td>HOOCCH₂CH(Me₂N→O)COOH</td>
<td>N,N-Dimethylaspartic N-oxide (12)</td>
<td>(OMe₂)Asp; Me₂(O)Asp</td>
</tr>
<tr>
<td>60</td>
<td>(CH₃)₂CHCH(NH₂)COOH</td>
<td>β,β-Dimethylcysteine (β mercaptovaline; penicillamine<sup>a</sup>)</td>
<td>Val(βSH); Cys(βMe₂)</td>
</tr>
<tr>
<td>61</td>
<td>(CH₃)₂CHCH₂CH(NH₂)COOH CH₃</td>
<td>threo-N, β-Dimethylleucine (13)</td>
<td>MeLeu(βMe)</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>α,3-Dimethyltyrosine</td>
<td>Tyr(α3-Me₂)</td>
</tr>
<tr>
<td>63</td>
<td>(C₆H₅)₂CHCH₂COOH</td>
<td>α,α-Diphenylglycine</td>
<td>Gly(Ph₂)</td>
</tr>
<tr>
<td>64</td>
<td>CH₃CH₂SCH₂CH₂CH(NH₂)COOH</td>
<td>Ethionine<sup>b</sup></td>
<td>Eth</td>
</tr>
<tr>
<td>65</td>
<td>CH₃CH₂NHCH₂COOH</td>
<td>N-Ethylglycine</td>
<td>EtGly</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>teleEthylhistidine<sup>abc</sup> "1-Ethylhistidine" (14) (cf. 88, 89)</td>
<td>His(βEt)<sup>abc</sup></td>
</tr>
<tr>
<td>67</td>
<td>H₂N(CONHCH₂COOH</td>
<td>Guanidinoacetyl (N-amidinoglycyl; glyoxycamine)</td>
<td>GdnAc–; AmdGly–</td>
</tr>
<tr>
<td>68</td>
<td>H₂N(CONHCH₂CH(NH₂)COOH</td>
<td>β-Guanidinoalanine</td>
<td>Ala(βGdn)</td>
</tr>
<tr>
<td>69</td>
<td>H₂N(CONHCH₂CH(NH₂)COOH</td>
<td>5-Guanidinovaleric acid</td>
<td>Val(5Gdn)</td>
</tr>
<tr>
<td>70</td>
<td>(CF₃)₂CHCH(NH₂)COOH</td>
<td>γ₁-Hexafluorovaline</td>
<td>Val(γ₁F₆)</td>
</tr>
<tr>
<td>71</td>
<td>H₂N(CONHCH₂CH(NH₂)COOH</td>
<td>[β,β-bis(trifluoromethyl)alanine]</td>
<td>Val(βF₆)</td>
</tr>
<tr>
<td>72</td>
<td>H₂N(CONHCH₂CH(NH₂)COOH</td>
<td>Homolysine<sup>c</sup> (15)</td>
<td>Hly</td>
</tr>
<tr>
<td>73</td>
<td>H₂NCONHCH₂COOH</td>
<td>Hydantoic acid; (carbamoylglycine)</td>
<td>CbmGly</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td>5-Hydantoinacetyl</td>
<td>HydAc–</td>
</tr>
<tr>
<td>75</td>
<td>CH₂CH(OH)CH₂CH(NH₂)COOH</td>
<td>ε-Hydroxynorleucine (16)</td>
<td>Nle(εOH)</td>
</tr>
<tr>
<td>76</td>
<td></td>
<td>1-Hydroxyippecolic acid (17)</td>
<td>Pip(1HO)</td>
</tr>
<tr>
<td>No.</td>
<td>Structure</td>
<td>Name/Reference</td>
<td>Symbol</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td>1-Hydroxyproline (17)</td>
<td>Pro(1HO)</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>3-Hydroxyproline</td>
<td>Pro(3HO)</td>
</tr>
<tr>
<td>79</td>
<td></td>
<td>4-Hydroxyproline</td>
<td>Pro(4HO)</td>
</tr>
<tr>
<td>80</td>
<td>CH₃N(OH)CH₂COOH</td>
<td>N-Hydroxysarcosine (17)</td>
<td>Sar(N-HO)</td>
</tr>
<tr>
<td>81</td>
<td>HOOCC₃H₂CH(NH₂)CONH₂</td>
<td>Isoasparagine<sup>b</sup></td>
<td>Asp-NH₂<sup>c</sup></td>
</tr>
<tr>
<td>82</td>
<td>HOOCC₃H₂CH(NH₂)CONH₂</td>
<td>Isoglutamine<sup>b</sup></td>
<td>Glu-NH₂<sup>c</sup></td>
</tr>
<tr>
<td>83</td>
<td>H₂NN(CHMe₂)COOH</td>
<td>2-Isopropylcarboxylic acid [2-(1-carboxyhydrazino)propane]</td>
<td>Hdz(iPr)</td>
</tr>
<tr>
<td>84</td>
<td>(CH₃)₂CHNH(CH₂)₂CH(NH₂)COOH</td>
<td>N²-Isopropylornithine</td>
<td>Orn(iPr)</td>
</tr>
<tr>
<td>85</td>
<td>CH₃C(SH)(NH₂)COOH</td>
<td>α-Mercaptopotamine (18)</td>
<td>Ala(αSH)</td>
</tr>
<tr>
<td>86</td>
<td>CH₃CH(NHCH₂)COOH</td>
<td>N-Methylalanine (19)</td>
<td>MeAla</td>
</tr>
<tr>
<td>87</td>
<td>CH₃CH₂CH₂CHCH₂CH(NHCH₂)COOH</td>
<td>N-Methylalloisoleucine (20)</td>
<td>(Me)alk</td>
</tr>
<tr>
<td>88</td>
<td></td>
<td>“1-Methylhistidine”<sup>bc</sup></td>
<td>His(1Me)<sup>bc</sup></td>
</tr>
<tr>
<td>89</td>
<td></td>
<td>“3-Methylhistidine”<sup>bc</sup></td>
<td>His(3Me)<sup>bc</sup></td>
</tr>
<tr>
<td>90</td>
<td>HOOCC₃H₂CH(NHCH₂)CONH₂</td>
<td>N-Methylisoasparagine (22)</td>
<td>MeAsp-NH₂</td>
</tr>
<tr>
<td>91</td>
<td></td>
<td>(N-Methyl)phenylalanine (23)</td>
<td>MePhe</td>
</tr>
<tr>
<td>92</td>
<td>CH₃OCH₂CH(NH₂)COOH</td>
<td>O-Methylserine</td>
<td>Ser(Me)<sup>e</sup></td>
</tr>
<tr>
<td>93</td>
<td>CH₃CH(OCH₂)CH(NH₂)COOH</td>
<td>O-Methylthreonine</td>
<td>Thr(Me)<sup>f</sup></td>
</tr>
<tr>
<td>94</td>
<td></td>
<td>N-Methyltyrosine (22)</td>
<td>MeTyr</td>
</tr>
</tbody>
</table>

^a Surinamine (N-Methyltyrosine)

^b Was described as “3-Methylhistidine” by Szent-Györgyi in 1956.

^c Also termed “Histidine-M.”

^d Described as “3-Methylhistidine” by Szent-Györgyi in 1956.

^e Also termed “Histidine-M.”
STRUCTURE AND SYMBOLS FOR SYNTHETIC AMINO ACIDS INCORPORATED INTO SYNTHETIC POLYPEPTIDES (Continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Structure</th>
<th>Name/Reference</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td></td>
<td>α-Methlytyrosine</td>
<td>Tyr(αMe)</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td>O-Methlytyrosine</td>
<td>Tyr(OMe); Phe(4-OMe)</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td>β-(1-Naphthyl)alanine</td>
<td>Ala(βNap-1)</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td>β-(2-Naphthyl)alanine</td>
<td>Ala(βNap-2)</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td>Nitroguanidinoacetyl</td>
<td>NGdnAc-</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>Norleucine (2-aminohexanoic acid)</td>
<td>Nle</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>Norvaline (2-aminovaleric acid)</td>
<td>Nva</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td>(Pentafluorophenyl)alanine</td>
<td>Ala(βPhF₅)</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td>Phenylglycine</td>
<td>Gly(Ph)</td>
</tr>
<tr>
<td>104</td>
<td></td>
<td>Pipecolic acid (piperidine-2-carboxylic acid)</td>
<td>Pip</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>β-(1-Pyrazolyl)alanine</td>
<td>Ala(βPz1)</td>
</tr>
<tr>
<td>106</td>
<td></td>
<td>β-(3-Pyrazolyl)alanine (24, 25)</td>
<td>Ala (βPz3)</td>
</tr>
<tr>
<td>No.</td>
<td>Structure</td>
<td>Name/Reference</td>
<td>Symbol</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td>β-(4-Pyrazolyl)alanine (25)</td>
<td>Ala(βPz4)</td>
</tr>
<tr>
<td>108</td>
<td></td>
<td>Pyro-2-aminoadipic acid</td>
<td>pAad; < Aad</td>
</tr>
<tr>
<td>109</td>
<td></td>
<td>Pyroglutamic acid<sup>b</sup> 5-pyrrolidone-2-carboxylic acid</td>
<td>pGlu; <Glu<</td>
</tr>
<tr>
<td>110</td>
<td>CH₃HNCH₂COOH</td>
<td>Sarcosine<sup>c</sup>; (N-methylglycine)</td>
<td>Sar<sup>c</sup>; MeGly</td>
</tr>
<tr>
<td>111</td>
<td>HOOCC₂H₂CONH₂</td>
<td>Succinamic acid</td>
<td>Suc·NH₂</td>
</tr>
<tr>
<td>112</td>
<td>H₂NCH₂CH₂SO₃H</td>
<td>Taurine (2-aminoethanesulfonic acid)</td>
<td>Tau</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td>Thiazolidine-4-carboxylic acid</td>
<td>Tzl</td>
</tr>
<tr>
<td>114</td>
<td></td>
<td>β-(2-Thienyl)alanine</td>
<td>Ala(βThi2)</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>β-(2-Thienyl)serine</td>
<td>Ser(βThi2)</td>
</tr>
<tr>
<td>116</td>
<td>(CH₃)₃N(CH₂)₃COOH</td>
<td>ε-(Trimethylammonio)hexanoic acid [(ε-trimethylammonio)caproic acid]</td>
<td>εAhx(NMe₃)</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td>o-Tyrosine</td>
<td>Phe(2HO)</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td>m-Tyrosine<sup>e</sup></td>
<td>Phe(3HO)</td>
</tr>
</tbody>
</table>

Compiled by M. C. Khosla and W. E. Cohn.
Structures and Symbols for Synthetic Amino Acids Incorporated into Synthetic Polypeptides

References